Appendix B Technology

C ontents Page
Technology Tool Cross-Reference Table 508
Graphing Calculator 510
Spreadsheets (Microsoft ${ }^{\circledR}$ Excel and Corel® Quattro ${ }^{\circledR}$ Pro) 544
Fathom ${ }^{\text {TM }}$ 570

Technology Tool C ross-Reference Table

Use the terms listed in the following table to help you determine the best technology tool to use for your calculations. For details on how to use each of these terms, refer to the corresponding entry in the appropriate section of Appendix B.

Topic
Binomial Distribution
Box-and-Whisker Plot
Combinations
Confidence Intervals
Correlation Coefficient
Factorials
Geometric Distribution
Graphing Data
Hypothesis Testing
Linear Regression
Line of Best Fit

Graphing Calculator
binomcdff function binompdf(function
STAT PLOT
nCr function
ZInterval instruction
Diagnostico n/ O ff LinReg instruction STAT PLOT
! function
geometpdff function
STAT PLOT TRACE instruction window settings Y= editor
Z-Test instruction
LinReg instruction STAT PLOT
LinReg instruction STAT PLOT

Spreadsheets	Fathom ${ }^{\text {m }}$
BIN O M DIST function	binomialCumulative() function binomialProbability() function
	graph icon
combinations function	combinations function
Chart feature CO RREL function	correlation coefficient scatter plot
FACT(n) function	
Chart feature	graph icon scatter plot
line of best fit	linear regression
line of best fit	linear regression

Topic	Graphing Calculator
Matrix Operations	copy matrices multiply matrices store matrices
Measures of Central Tendency	mean(function median(function 1-Var Stats command
Measures of Spread	1-Var Stats command standard deviation
Non-linear Regression	Non-linear regression: CubicReg instruction ExpReg instruction QuadReg instruction
Normal Distribution	
Organizing Data	augment(function cumSum(function prod(function seql function SortA (function sum(function
Permutations	nPr function
Quartiles	interquartile range semi-interquartile range 1-Var Stats command
Random Numbers	rand Int (function randN orm(function
Rounding Numbers	round (function
Scatter Plots	STAT PLOT
Standard Deviation	standard deviation 1-Var Stats
Variance	1-Var Stats
Z-scores	

Spreadsheets	Fathom ${ }^{\text {m" }}$
Matrices: addition and subtraction inverse multiplication scalar multiplication storing transpose	

Graphing Calculator

N ote: Unless otherwise stated, all keystrokes are for the TI-83 Plus or TI-83
graphing calculator.

Function or Task	Keystroke(s), Menu, or Screen
augment(function augment(listA , listB)	The augment(function found under the LIST O PS menu is used to join together the elements of list A and list B. Example: Select 1:Edit... from the STAT EDIT menu to create lists L1 and L2 as shown: Press 2nd MODE to Q UIT to the home screen. Press \square 2nd \square Stat to display the LSTT O PS menu. Select 9 :augment(and type L1 \quad L2 1 . Press $\mathrm{STO}+$ L3. Press ENTER. You can inspect L3 by selecting 1:Edit... from the STAT EDIT menu.

Function or Task	Keystroke(s), Menu, or Screen
binomcdf(function binomcdf(numtrials,p,x)	The binomcdf(function allows you to calculate the probability that an experiment whose only possible outcomes are success or failure, with a probability of success given by p, achieves x or fewer successes in the number of trials given by numtrials. The value for x can also be a list of numbers. If x is not specified, then a list of values from $x=0$ to $x=$ numtrials is generated. Example 1: A die is rolled ten times. What is the probability of getting five or fewer 2s? Press 2nd vars to display the DISTR menu. Scroll down the screen and select $A: b i n o m c d f($. Type $10 \leftrightarrows 1 \square 6 \square 5$ 1 and press ENTER. The probability is approximately 0.998 . Example 2: To find all of the cumulative probabilities for Example 1, above, from $x=0$ to $x=10$ and store them in list L1, retrieve the binomcdf(function as above, but leave out the parameter x. Then, press STO* followed by 2nd LI ENTER. You can scroll through the list of probabilities using the right arrow key. You can also inspect list L1 by selecting 1:EDIT... from the STAT EDIT menu.

Function or Task	Keystroke(s), Menu, or Screen
	Example 3: If you want only a single probability, for example, that you get exactly five 2 s in ten rolls of a die, you need to subtract the cumulative probability that $x=4$ from the cumulative probability that $x=5$, as shown below: Note: You can more easily calculate a single probability using the binompdf(function. Example 4: Suppose that you want the cumulative probabilities of getting 3, 4, or 5 twos. This can be done as follows: Note: Brace brackets $\}$ are required for the list of x values.
binompdf(function binompdf(numtrials, p, x)	The binompdf(function allows you to calculate the probability that an experiment whose only possible outcomes are success or failure, with a probability of success given by p, achieves x successes in the number of trials given by numtrials. x may also be a list of numbers. If x is not specified, then a list of values from $x=0$ to $x=$ numtrials is generated. This list can be stored in one of the graphing calculator's lists.

Example 1:

A die is rolled ten times. What is the probability of rolling exactly five 2s? Press 2nd vars to display the DISTR menu. Scroll down the screen and select $0:$ binompdf(. Type $10 \square 1 \square 6 \square 5 \square 1$ and press ENTER.

The probability is approximately 0.013 .

Example 2:

To calculate all of the probabilities for Example 1, above, from $x=0$ to $x=10$ and store them in list $L 1$, retrieve the binompdf(function as above, but leave out the parameter x . Then, press STO* followed by 2nd LI ENTER.

You can scroll through the list of probabilities using the right arrow key. You can also inspect list L1 by selecting 1:EDIT... from the STAT EDIT menu.

Once the probabilities are stored in the list, you can graph them using STAT PLOT.

Function or Task	Keystroke(s), Menu, or Screen
	Example 3: Suppose that you want only the probabilities of getting 3, 4, or 5 twos. This can be done as follows: Note: Brace brackets $\}$ are required for the list of x values.
ClrAllLists command	To clear all lists at once, press 2nd + to access the M EM O RY menu. Select 4:CIrAllists and press ENTER. A Done message will indicate that all lists have been cleared. You can check the lists by selecting 1:EDIT... from the STAT EDIT menu.
ClrList command CIrList listname1, listname2,...	The CIrList command found under the STAT EDIT menu is used to clear the entries in one or more lists. It also removes any formula associated with the list name. For example, to clear lists L1 and L2, select 4:CIrList from the STAT EDIT menu and type L1 \quad L2. Press Enter. Note: If you want to clear all of the lists at once, it is faster to use the ClrAllists command.

Function or Task	Keystroke(s), Menu, or Screen
copy matrices	Suppose that you want to copy the elements of matrix [A] to matrix [B]. Enter matrix [A] into the TI-83 Plus as described under store matrices. $A=\left[\begin{array}{rrr} 14 & 10 & 12 \\ 12 & 14 & 10 \\ 8 & 7 & 5 \\ 18 & 15 & 14 \end{array}\right]$ On the TI-83 Plus, press 2nd $x^{-1} 1$ STO+ 2 nd $x^{-1} 2$ Enter. This will copy matrix [A] to matrix [B]. On the TI-83, press Matrx 1 Sto Matrx 2 Enter. This will copy matrix $[\mathrm{A}]$ to matrix $[\mathrm{B}]$. Note: On the TI-83 Plus, the MATRX menu is accessed by pressing 2nd x^{-1}. On the TI-83, the MATRX menu is accessed by pressing the MATRX key.
cumSum(function cumSum(listname)	The cumSum(function returns the cumulative sum of the elements in a list. It is useful for calculating cumulative frequencies for a distribution. Example: Enter the numbers 1, 3, 5, 7, 9, and 11 in L1 by selecting 1:Edit... from the STAT EDIT menu. Move the cursor on top of the list name for L . Press 2nd STAT \square to display the LIST O PS menu. Select 6:cumSum(and type L1 (1). Press ENTER.

Function or Task	Keystroke(s), Menu, or Screen
DiagnosticOn	When you use one of the regression functions to generate a curve of best fit, the calculator will calculate correlation coefficients that allow you to judge how good the fit was. However, you must first turn on the diagnostic mode. Press 2nd 0 to access the CATA LO G menu. Scroll down the list until you line up the black arrow on the screen with DiagnosticO n. Press the Enter key to select DiagnosticOn. Press Enter again to turn on the diagnostic mode. Try one of the examples of linear regression or non-linear regression in this appendix to see the coefficients displayed on the screen. In a similar manner, you can turn off the diagnostic mode by accessing the CATALO G menu and selecting DiagnosticO ff.
! function value!	The TI-83/TI-83 Plus does not have a factorial key. To calculate a factorial, use the ! function found on the MATH PRB menu. Example: To evaluate 8!, press 8 MATH $\square \square \square$ (or MATH \square) to display the MATH PRB menu. Select 4:! and press ENTER. Note: The TI-83/TI-83 Plus has the same maximum 69! limit that most scientific calculators have. Most spreadsheets have higher limits.

Function or Task	Keystroke(s), Menu, or Screen
>Frac function value $>$ Frac	The $>$ Frac function found under the MATH menu will display the results of a calculation in fractional form. Example: To add $\frac{1}{2}+\frac{1}{3}$, and display the result as a fraction rather than as a decimal, type $1 \div 2 \div 1 \div 3$ MATH 1 ENTER.
geometpdf(function geometpdf(p, x)	The geometpdf(function calculates the probability that the first success of an event will occur on trial x, given a probability of success p. Example: Calculate the probability that the first roll of doubles on a pair of dice occurs on the fourth roll. In this case, $p=\frac{1}{6}$ and $x=4$. Press 2nd vars to display the DISTR menu. Select D:geometpdf(and type $1 \because 6 \square 4 \square 1$ and press ENTER. There is a probability of about 0.096 that the first doubles will occur on the fourth roll of the dice. This value is also the probability for a waiting time of three trials.

Function or Task	Keystroke(s), Menu, or Screen
invNorm(function invN orm(p,mean,standard deviation)	The invNorm(function is the opposite of the normalcdf(function. It allows you to calculate the distribution function which gives a probability specified by p using a normal distribution with a given mean and standard deviation. The mean and standard deviation are optional. If they are not specified, then the mean is assumed to be zero, and the standard deviation is assumed to be one. Example: A particular IQ test has a mean of 100 and a standard deviation of 10 . There is a probability of 0.454 that a given participant scored at or below a particular IQ, and you wish to find this IQ. Press 2nd vars to display the DISTR menu. Select $3:$ invN orm (and type $454 \square 100 \square 10 \square 1$ and press ENTER. The correct IQ is approximately 98.84 .
interquartile range	The interquartile range of the elements of a list may be determined by carrying out the 1-Var Stats command on a list of data as described on page 529. The results of the 1 -Var Stats command include the first quartile Q1 and the third quartile Q3. The interquartile range is calculated by subtracting Q3-Q1.
Linear regression	See LinReg instruction

Function or Task	Keystroke(s), Menu, or Screen
LinReg instruction LinReg(ax+b) Xlist, Ylist, Function	You can use the LinReg method of regression if it looks like your scatter plot resembles a linear function. Example: Clear all functions in the $Y=$ editor. Clear all lists using the CIrAlllists command. Press STAT PLOT and turn off all plots except Plot1. Ensure that you are set for a scatter plot, that Xlist is L , and that Ylist is L . Use the STAT EDIT menu to enter the integers $0,1,2,3$, and 4 into L1 and to enter the numbers $1.2,4.3,6.5,10.8$, and 12.5 into L . Press the zoom key and select 9 :ZoomStat to fit the axes to the data. Press STAT \square to display the STAT CALC menu. Select 4: LinReg $(a x+b)$ and type L1 \square L2 \square Y1. (To display Y1 press vars \square. Select 1:Function. Select 1:Y1.) Press Enter. Press GRAPH). The regression equation is stored in the $Y=$ editor. If you press $Y=$, you will see the equation generated by the calculator.

Function or Task	Keystroke(s), Menu, or Screen
mean(function mean(listname)	The mean(function located under the LIST M ATH menu returns the mean of the list specified by listname. Example: Select 1:Edit... from the STAT EDIT menu to enter the numbers 1, 2, 3, and 4 into L1. Press 2nd MODE to Q UIT to the home screen. Press 2nd STAT \square to display the LIST MATH menu. Select 3:mean (and type L1 1 . Press ENTER.
median(function median(listname)	The median(function located under the LIST MATH menu returns the median of the list specified by listname. Example: Select 1:Edit... from the STAT EDIT menu to enter the numbers 1, 2, 3, 4, 5, 6, and 7 into L1. Press 2nd MODE to Q UIT to the home screen. Press 2nd STAT \square to display the LIST M ATH menu. Select 4:median and type L1 1. Press ENTER.

Function or Task	Keystroke(s), Menu, or Screen
mode settings	If you press the MODE key, you will see a number of mode settings that affect the way the TI-83/TI-83 Plus displays and interprets numbers and graphs. a) You have a choice of normal, scientific, or engineering format for real numbers. b) You may choose a fixed number of decimal points for floating point numbers from 0 to 9 . c) You may measure angles in radians or degrees. d) You may choose your graph plotting as Func (y as a function of x), Par (x and y are functions of a parameter t), Pol (polar coordinates r as a function of θ), or Seq (to plot sequences). e) You may choose to connect or not to connect the dots plotted for functions. f) You may plot your functions sequentially or simultaneously. g) You may display numbers as Real (real numbers), a + bi (complex numbers in vector form), or re^ $\theta \mathrm{i}$ (complex numbers in polar form). h) You may plot your graph Full (Screen), as the top half of the screen with text at the bottom in Horiz mode or in the left half of the screen with the corresponding table in the right half of the screen in G-T mode.

Function or Task	Keystroke(s), Menu, or Screen
multiply matrices	To multiply matrix $[A]$ by matrix $[B]$, store the matrices $[A]$ and $[B]$ using the method described in store matrices. $A=\left[\begin{array}{rrr} 5 & 1 & -2 \\ 4 & -2 & 0 \end{array}\right] \quad B=\left[\begin{array}{rr} 7 & 0 \\ -4 & 3 \\ 1 & -6 \end{array}\right]$ Using the TI-83 Plus, multiply the matrices by pressing 2nd 1 x 2nd $x^{-1} 2$ STO+ 2 and $x^{-1} 3$ ENTER. Using the TI-83, multiply the matrices by pressing MATRX 1 MATRX 2 STO+ MATRX 3 ENTER. These keystrokes will multiply [A] by [B] and store the result in [C]. The elements of [C] will be displayed on the screen. Note: On the TI-83 Plus, the M ATRX menu is accessed by pressing 2nd x^{-1}. On the TI-83, the M ATRX menu is accessed by pressing the Matrx key.
nCr function value1 nCr value2	To calculate a combination, use the nCr function located under the MATH PRB menu. Example: Evaluate the number of subsets of 10 objects taken 7 at a time, or 10 choose 7. Type 10. Press MATH $\square \square$ (or MATH \square) to display the MATH PRB menu. Select $3: \mathrm{nCr}$ and type 7. Press Enter.

Function or Task
$\begin{aligned} & \text { Non-linear regression: } \\ & \text { CubicReg instruction }\end{aligned}$ CubicReg instruction

CubicReg Xlist, Ylist, Function

You can use the CubicReg method of regression if it looks like your scatter plot resembles a cubic function, as shown below:

Example:

Clear all functions in the $Y=$ editor.
Clear all lists using the ClrAlllists command.
Press STAT PLOT and turn off all plots except Plot1. Ensure that you are set for a scatter plot, that Xlist is L1, and that Ylist is L2.
Select 1:Edit... from the STAT EDIT menu to enter the integers $0,1,2$, 3 , and 4 into $\mathrm{L1}$ and to enter the numbers $1.9,2.4,3.1,4.5$, and 8.9 into 12.
Press the zoom key and select 9:ZoomStat to fit the axes to the data.

Press STAT \square to display the STAT CALC menu. Select 6:CubicReg and type L1 \quad, \quad, \quad Y1 (To display Y1, press vars \square. Select 1:Function. Select 1:Y1.) Press Enter.

Function or Task	Keystroke(s), Menu, or Screen
	Press GRAPH). The regression equation is stored in the $Y=$ editor. If you press $Y=$, you will see the equation generated by the calculator.
Non-linear regression: ExpReg instruction ExpReg Xlist, Ylist, Function	You can use the ExpReg method of regression if it looks like your scatter plot resembles an exponential function, as shown below: E xample: Clear all functions in the $Y=$ editor. Clear all lists using the ClrAlllists command. Press STAT PLOT and turn off all plots except Plot1. Ensure that you are set for a scatter plot, that Xlist is L1, and that Ylist is L2. Select 1 :Edit... from the STAT EDIT menu to enter the integers $0,1,2$, 3 , and 4 into $\mathrm{L1}$ and to enter the numbers $0.11,0.25,0.42,0.85$ and 1.55 into L2. Press the zoom key and select 9:ZoomStat to fit the axes to the data.

Function or Task	Keystroke(s), Menu, or Screen
	Press STAT \square to display the STAT CALC menu. Select 0:ExpReg and type L1 $\square 12 \square$ Y1. (To display Y1, press VARS \square. Select 1:Function. Select 1:Y1.) Press Enter. Press GRAPH). The regression equation is stored in the $Y=$ editor. If you press = , \qquad you will see the equation generated by the calculator.
Non-linear regression: QuadReg instruction QuadReg Xlist, Ylist, Function	You can use the Q uadReg method of regression if it looks like your scatter plot resembles a quadratic function, as shown below: Example: Clear all functions in the $\mathrm{Y}=$ editor. Clear all lists using the ClrAlllists command. Press STAT PLOT and turn off all plots except Plot1. Ensure that you are set for a scatter plot, that Xlist is L1, and that Ylist is L2. Select 1:Edit... from the STAT EDIT menu to enter the integers $0,1,2$, 3 , and 4 into Ll and to enter the numbers $0.9,1.3,1.9,2.7$, and 4.1 into L .

Function or Task	Keystroke(s), Menu, or Screen
	Press the Zoom key and select 9:ZoomStat to fit the axes to the data. Press STAT \square to display the STAT CALC menu. Select 5:Q uadReg and type L1 $\quad 12 \square$ Y1. (To display Y1, press VARS \square. Select 1:Function. Select 1:Y1.) Press ENTER. Press GRAPH). The regression equation is stored in the $Y=$ editor. If you press $=$, \square you will see the equation generated by the calculator.
normalcolf(function normalcdf(lowerbound, upperbound, mean, standard deviation)	The normalcdf(function allows you to calculate the probability that a given data point lies between lowerbound and upperbound using a normal distribution with a given mean and standard deviation. The mean and standard deviation are optional. If they are not specified, then the mean is assumed to be zero, and the standard deviation is assumed to be one.

Function or Task	Keystroke(s), Menu, or Screen
	Example 1: A particular IQ test has a mean of 100 and a standard deviation of 10 . Determine the probability that a given participant scored between 90 and 115. Press 2nd vars to display the DISTR menu. Select 2 :normalcdf(and type $90 \square 115 \square 100 \square 10 \square$ (\quad) Press Enter. The probability that a given participant scored between 90 and 115 is approximately 0.7745 . Example 2: Calculate the probability that a participant scored 115 or less. In this case, the value of lowerbound is $-\infty$. You can approximate $-\infty$ using a negative number like -1×10^{99}. Select the normalcdf(function as above. Type -1 and press 2 nd,\rightarrow to access the EE (Enter Exponent) function. Type $99 \square 115 \square 100 \square 10 \square$ and press Enter. The probability of scoring 115 or less is approximately 0.933 .

Function or Task
normallpdf(function
normalpdf(x,mean,standard

Keystroke(s), Menu, or Screen

 deviation)The normalpdf(function calculates the probability density function at a specified value for variable x using a normal distribution with a given mean and standard deviation. The mean and standard deviation are optional. If they are not specified, the mean is assumed to be zero, and the standard deviation is assumed to be one.

E xample:

A particular IQ test has a mean of 100 and a standard deviation of 10 . Determine the probability density function at a value of $x=110$. Press 2nd vars to select the DISTR menu. Select 1:normalpdf(and type $110 \backsim 100 \backsim 10 \square$. Press ENTER.

The probability density is approximately 0.024 .
This function can also be used to plot the probability distribution.
Change your window settings to:

Press the $Y=$ key to display the $Y=$ editor, then press 2nd vars to display the the DISTR menu. Select 1:normalpdf(. Press X, $\square 10 \square$. Press GRAPH).

You can then use the TRACE instruction to inspect the graph.

Function or Task	Keystroke(s), Menu, or Screen
nPr function value1 nPr value2	To calculate a permutation, use the nPr function available located under the MATH PRB menu. Example: Evaluate the number of arrangements of 10 objects taken 7 at a time. Type 10. Press MATH $\square \square \square$ (or MATH (\square) to display the MATH PRB menu. Select 2 :nPr and type 7. Press ENTER. 10 hFr 7 6048616
1-Var Stats command 1-Var Stats Xlist, Freqlist	The TI-83/TI-83 Plus can calculate various statistical variables for a list of numbers specified by Xlist. Similar variables for grouped data can be calculated by adding the Freqlist. Example 1: Ten automobiles were tested for fuel economy, and were found to burn the following amounts of fuel, measured in litres per 100 km . $8.4,5.0,4.8,5.9,7.3,8.2,6.4,8.1,9.5,4.2$ Use the CIrAlllists command to clear the lists in your calculator if necessary. Select 1:Edit... from the STAT EDIT menu to enter the above numbers into L1. Press STAT \square to display the STAT CALC menu. Select 1:1-Var Stats. Press 2nd 1 to type L1 and press ENTER. You can scroll down to see more statistics:

Function or Task	Keystroke(s), Menu, or Screen
	The meanings are: \bar{x} is the mean Σx is the sum of all the values Σx^{2} is the sum of the squares of the values Sx is the sample standard deviation σx is the population standard deviation n is the number of values in the list $\min X$ is the lowest value Q_{1} is the first quartile Med is the median Q_{3} is the third quartile maxX is the highest value Example 2: Twenty people were asked to write down the amount of cash they were carrying. The data were arranged into intervals. The frequency of occurrence in each interval was noted. The results were as follows: Use the ClrAllLists command to clear all the lists, if necessary. Enter these data into L1 and L2, respectively. Select the $1-V a r$ Stats command as described in Example 1, but this time type L1 \square L2. Press ENTER

Function or Task	Keystroke(s), Menu, or Screen
prod(function prod(list,start,end)	The prod(function is used to find the product of the elements of a list beginning with element start and finishing with element end. If start and end are not specified, then the entire list is used. Example: Select 1:Edit... from the STAT EDIT menu to enter 1, 2, 3, 4, and 5 in L1. Press 2nd MODE to Q UIT to the home screen. Press 2nd STAT \qquad . $2 \square 4 \square$. Press ENTER. \square Frod (L1, 2,4)
quartiles	The quartiles of the elements of a list may be determined by carrying out the 1 -Var Stats command on the list, as described on page 529 . The results of the 1-Var Stats command include the first quartile Q_{1} and the third quartile Q_{3}.
randInt(function randlnt(lowerbound, upperbound, numtrials)	When simulating probability problems, it is useful to be able to generate random integers. This can be done using the randlnt(function located under the MATH PRB menu. The function is followed by a lowerbound, an upperbound, and an optional numtrials. Example 1: Simulate one roll of one die. The lowerbound is 1 , the upperbound is 6 , and you do not need to enter the numtrials, since the default value is assumed to be 1. Press MATH $\square \square$ (or MATH \square) to display the M ATH PRB menu. Select 5 :randInt(and type $1 \square 6 \square$. Press ENTER. You will get a random integer between 1 and 6 as shown in the first calculation of the screen shot following Example 3.

Function or Task
 Example 2:

Keystroke(s), Menu, or Screen

If you want three rolls of the die, press the same keystrokes to select 5:randInt(again, but this time type $1 \square 6 \square 3 \square$. Press Enter. You will get a list of three random rolls of the die as shown in the second calculation of the screen shot following Example 3.

E xample 3:

You can use the function twice to get the sum of two dice rolled independently, as shown in the third calculation of the following screen shot.

A Note About Seeds: Whenever you use the random integer function, you will generate the same series of random integers. The start of the series is controlled by the value of the variable rand which is stored internally in the TI-83 Plus, and is set to zero by default. If you change the default value to something else, you can generate a different series. For example, you can change the default to 1 using the keystrokes 1 STO + MATH 41 ENTER.

Function or Task	Keystroke(s), Menu, or Screen
randNorm(function randN orm(mean, standard deviation, numtrials)	You can use the randNorm(function to select a random number from a normal distribution with a given mean and standard deviation. If numtrials is not specified, you get one random number. If you want more one random number, set the value for numtrials. Example 1: A particular IQ test has a mean of 100 and a standard deviation of 10 . Find three random values assuming a normal distribution. Press \triangle MATH $\square \square \square$ (or MATH \square) to display the M ATH PRB menu. Select 6:randN orm (and type $100 \square 10 \square 3 \square 1$. Press ENTER. You will get three random IQs from the distribution similar to the following screen: Use the right arrow key to scroll through the other values. You can store these results in a list if you wish by adding $\mathrm{STO}^{\mathrm{T}+}$ 2nd 1 (to use L1) to the randN orm(function as shown in the following screen: A Note About Seeds: The random number seed discussed in the section on the randlint(function also applies to the randN orm(function.

Function or Task	Keystroke(s), Menu, or Screen
round(function round(operand,\#decimals)	The round (function located under the MATH N UM menu will return the operand correctly rounded to the number of decimal places specified in \#decimals. The operand can be a number, an expression, a list name or a matrix name. In the case of a list or a matrix, the function will round all of the elements. Example: Evaluate the fraction $\frac{3}{7}$ rounded correctly to four decimal places. Press MATH \square to display the MATH NUM menu. Select 2 :round (and type 3 \square 4 \square . Press Enter.
semi-interquartile range	The semi-interquartile range is one half of the interquartile range. See interquartile range.
seq(function seq(expression, variable, begin, end, increment)	You can use the seq(function to create a list of numbers with various properties. If the value of increment is not specified, it is assumed to be one. Example 1: Enter a list of the squares of the odd numbers from 5 to 11 inclusive. The value of begin is 5 , end is 11 , and increment is 2 . Press the \square 2nd \qquad \square to display the LIST O PS menu. Select 5 :seq(and type ALPHA A and press x^{2}. Type \square ALPHA A $\square 5$ $\square 11 \bigcirc 2,1$. Press $\mathrm{STO}^{2} \rightarrow 1$ to store the result in L1. Press Enter.

Function or Task	Keystroke(s), Menu, or Screen
	Notice the list of odd number squares, as expected. These numbers have also been stored in list L1. You can inspect L1 by selecting 1:Edit... from the STAT EDIT menu.
SortA(function SortA (listname)	The SortA (function located under the LIST O PS menu will sort the list specified by listname into ascending order. Example: Select 1:Edit... from the STAT EDIT menu to enter 1, 3, 4, and 2 into L1. Press 2nd STAT \square display the LIST 0 PS menu. Select 1:SortA (and type L1 1 . Press ENTER. Press 2nd 1 to display list L1. Note: A related function is the SortD (function which sorts a list in descending order.
ShadeN orm(function ShadeN orm(lowerbound, upperbound, mean, standard deviation)	The ShadeN orm(function allows you to shade the area under the probability density graph that a given data point lies between lowerbound and upperbound using a normal distribution with a given mean and standard deviation. The mean and standard deviation are optional. If they are not specified, then the mean is assumed to be zero, and the standard deviation is assumed to be one.

Note: A related function is the SortD(function which sorts a list in descending order.

The ShadeN orm(function allows you to shade the area under the probability density graph that a given data point lies between lowerbound and upperbound using a normal distribution with a given mean and standard deviation. The mean and standard deviation are optional. If they are not specified, then the mean is assumed to be zero, and the standard deviation is assumed to be one.

Function or Fask	Keystroke(s), Menu, or Screen
	Example 1: A particular IQ test has a mean of 100 and a standard deviation of 10 . Display and shade the probability density function that a given participant scored between 90 and 115 . First, adjust your window settings as shown: Press 2nd vars \square to display the DISTR DRAW menu. Select 1:ShadeN orm(. Type $90 \square 115 \square 100 \square 10 \square$ and press ENTER. Notice that the probability represented by the shaded area has also been displayed.
standard deviation stdDev(listname)	The stdDev(function located under the LST MATH menu returns the standard deviation of the list specified by listname. E xample: Select 1:Edit... from the STAT EDIT menu to enter the numbers $1,2,3$, 4, 5, 6, and 7 into L1. Press 2nd MODE to Q UIT to the home screen. Press 2nd STAT \square to display the LIST MATH menu. Select 7:stdDev(and type L1 1). Press ENTER. st.eDeg(Li) 2. 166246899

Function or Task	Keystroke(s), Menu, or Screen
STAT PLOT	The plot routines which are used to plot graphs of data entered into the lists of the TI-83/TI-83 Plus are controlled by the STAT PLO T screen. This screen is accessed by pressing 2nd $Y=$. The screen contains five options: Options 1, 2, and 3 control the three plot routines. Three different statistical plots can be displayed on the graphing screen at one time. Option 4 turns all plots off, and option 5 turns all plots on. If you select a plot, say Plot1, then you will see the following screen: The first line is used to turn Plot1 0 n or 0 ff . The second line allows you to select the type of graph you want: scatter plot, $x y$-plot, histogram, modified box plot, box plot, or normal probability plot. The next line or lines let you choose which list or lists will provide the data for the axis or axes. The last line lets you choose one of three symbols to display data points.
store matrices	Store the following matrix in the TI-83/TI-83 Plus: $A=\left[\begin{array}{rrr} 14 & 10 & 12 \\ 12 & 14 & 10 \\ 8 & 7 & 5 \\ 18 & 15 & 14 \end{array}\right]$ On the TI-83 Plus, press \square 2nd to access the MATRX menu. On the TI-83, press the Matrx key to access the MATRX menu.

The first line is used to turn Plot1 0 n or 0 ff . The second line allows you to select the type of graph you want: scatter plot, $x y$-plot, histogram, modified box plot, box plot, or normal probability plot. The next line or lines let you choose which list or lists will provide the data for the axis or axes. The last line lets you choose one of three symbols to display data points.

Store the following matrix in the TI-83/TI-83 Plus:
$A=\left[\begin{array}{rrr}14 & 10 & 12 \\ 12 & 14 & 10 \\ 8 & 7 & 5 \\ 18 & 15 & 14\end{array}\right]$
On the TI-83 Plus, press 2nd x^{-1} to access the MATRX menu.

On the TI-83, press the Matrx key to access the MATRX menu.

Function or Task	Keystroke(s), Menu, or Screen
	Press \square (or \square) to display the MATRX EDIT menu. Select $1:[\mathrm{A}]$, which is matrix [A]. The default dimensions are 1×1 as shown in the following screen: Change these dimensions to 4×3. Notice that the matrix enlarges to the required dimensions. Scroll to the first element using the right blue arrow key. Type 14 and press ENTER. Continue to fill in the elements of the matrix by typing each element and pressing ENTER. Once all elements are entered, you will see:
sum(function sum(list,start,end)	The sum(function is used to find the sum of the elements of a list beginning with element start and finishing with element end. If start and end are not specified, then the entire list is used. Example: Select 1:Edit... from the STAT EDIT menu to enter the list of numbers 1, 2, 3, 4, and 5 in L1. Press 2nd STAT \square to display the LIST M ATH menu. Select 5 :sum (and type $\mathrm{L}, \mathrm{D} 2, \mathrm{O} 4$. Press ENTER .

Function or Task	Keystroke(s), Menu, or Screen
TRACE instruction	The TRACE instruction allows you to move a cursor along a graph while a readout of the coordinates is displayed as shown below. Example: Display and trace along the graph of $y=x^{2}$. Turn off all plots using the STAT PLOT screen. Press the $Y=$ key to display the $Y=$ editor. Press the variable key, marked $x, T,, n$ followed by the x^{2} key. To view the graph of $y=x^{2}$ in the standard viewing window, press ZOOM 6. To trace along the graph, press TRACE. The tracing cursor will appear on the graph. The coordinates of the location of the cursor are displayed at the bottom of the screen. Use the blue left and right arrow keys to move the cursor along the graph.
window settings	The window settings for the current viewing window can be adjusted by pressing the wnoow key. You can set the limits and scales on both the horizontal and the vertical axes. Example: Suppose you want to plot the function $y=x^{2}$ for values of x ranging from -20 to +20 . Start by entering the function into the $Y=$ editor. Press $Y=$. Clear any existing functions at this time. Move to Y 1 using the blue arrow keys if necessary. Press x, T, T, n. Press x^{2}.

Function or Task	Keystroke(s), Menu, or Screen
	Press (Wnoow. Set Xmin to $-20, \mathrm{Xmax}$ to $+20, \mathrm{Xscl}$ to 5 , Ymin to 0 , Ymax to $400, \mathrm{Yscl}$ to \square and Xres to 1 . Press GRAPH). Notice where the marks are on the axes. Return to the window settings screen, and experiment with the settings. Check the graph to see the effects of your changes.
$\mathrm{Y}=$ editor	The $Y=$ editor is accessed by pressing $Y=$. The $Y=$ editor allows you to enter functions for graphing or tabling purposes. Example: To graph $y=x^{2}$, press the \square $\mathrm{Y}=$ key. To obtain the variable X , press $x^{\times, \text {T, }, n}$. Press \square . Press \qquad 6 to view the graph of $y=x^{2}$ in the standard viewing window. You may add as many functions as you have space for. You can select or deselect whether a function is plotted by moving the cursor to the equal sign in the function, and pressing ENTER key to toggle selection/deselection.
ZInterval instruction	The ZInterval instruction allows you to find a desired confidence interval for the mean from a finite sample of a distribution whose population mean is not known, but whose standard deviation is known.

Example:

Suppose that a manufacturer knows that the standard deviation for the drying time of latex paints is 10.5 min . A sample of 20 items are painted, and the mean drying time for the sample is found to be 75.4 min . What is the 90% confidence interval for the mean of the population of paint drying times? To determine this, you can use the ZInterval instruction found under the STAT TESTS menu.

Press STAT $\square \square$ to display the STAT TESTS menu. Select 7:ZInterval.

```
baphing calgulator
ZInt.erval
    Inft:पEtE St.gt.E
    0:9
    List:L1
    Fres:1
    c-Level:.95
    Ealcuil.at
```

Note that you perform the test with either raw Data or Stats already calculated from a sample. Press \square ENTER to select the Stats option. Set the remaining parameters as shown:

Note that 10.5 is the standard deviation of the distribution, 75.4 is the sample mean, 20 is the number of samples, and 0.9 is the confidence level desired.
Use the arrow keys to scroll down to Calculate and press ENTER.

You can be 90% certain that the population mean lies between about 71.5 and 79.3. In this same manner, you can calculate confidence intervals for other confidence levels.

Function or Fask	Keystroke(s), Menu, or Screen
	The calculation on page 541 can also be performed using raw Data. Press STAT \square to display the STAT TESTS menu. Select 7:ZInterval. This time select the Data option. Note that the parameters you typed in are still there. ZInteroul 0:10.5 Fresis C-Level: 9 Calculate Note that your sample data must be entered in L1 (or whatever other list you specify) before attempting to Calculate the confidence interval.
Z-Test instruction	The Z-Test instruction allows you to test the mean from a finite sample of a distribution whose mean is not known, but whose standard deviation is known. Example: A manufacturer knows that the standard deviation for the drying time of latex paints is 10.5 min . A sample of 20 items are painted, and the mean drying time is found to be 75.4 min . How confident can the manufacturer be that this would represent the mean drying time of the paint if a larger number of samples were taken? To determine this, you can use the Z-Test instruction located in the STAT TESTS menu to determine the probability that the real mean is 80 , and that 75.4 is just a statistical variation. Press STAT $\square \square$ to display the STAT TESTS menu. Select 1:Z-Test to obtain the following screen:

Function or Task	Keystroke(s), Menu, or Screen
	You can perform the test with either raw Data or Stats already calculated from a sample. Use the arrow key, and press ENTER to select the Stats option. Set the remaining parameters as shown on the right: Note that 80 is the hypothesized mean, 10.5 is the standard deviation, 75.4 is the sample mean, and 20 is the number of samples. Use the arrow keys to scroll down to Calculate and press ENTER. Note that the probability that the real mean is 80 is approximately $p=0.025$. In the same manner, you can test other values for the mean of the distribution. You can also display the results graphically. Press STAT $\square \square$ to display the STAT TESTS menu. Select 1:Z-Test. Note that the parameters you typed in are still there. Use the arrow keys to scroll down, and this time select the Draw option at the bottom of the screen. Press ENTER. The shaded area represents the probability of getting a sample mean of 75.4 or less if the real mean is 80 . The same test can be performed using raw Data. Press STAT $\square \square$ to display the STAT TESTS menu. Select 1:Z-Test. This tiin select the Data option. Your sample data must be entered in L1 (or whatever other list you specify) before attempting to Calculate or Draw.

Spreadsheets (Microsoft® Excel and Corel® Quattro® Pro)

N ote: The methods provided apply for Microsoft® Excel 2000 and Corel®
Quattro ${ }^{\circledR}$ Pro 8 and 9 . Methods may vary slightly for other versions.

Function or Task	Keystroke(s), Menu, or Screen
absolute cell referencing	See References: relative referencing absolute referencing mixed referencing
add worksheets Microsoft® Excel: Insert/ W orksheet Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Insert/ Sheet	Microsoft ${ }^{\circledR}$ Excel: If a new worksheet is required, choose Insert/ W orksheet. The new worksheet will be inserted before the currently selected worksheet. Simply drag the TA B for a worksheet to move it in the worksheet list. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: If a new worksheet is required, choose Insert/ Sheet. The new worksheet will be inserted before the currently selected worksheet. Simply drag the TAB for a worksheet to move it in the worksheet list.
average Microsoft ${ }^{\circledR}$ Ex cel: =AVERA G E(array) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @AVG (array)	Microsoft ${ }_{\circledR}$ Excel: The average function is =AVERA GE(array). E xample: To find the average of $6,7,8,9$, and 10 , type $=\operatorname{AVERAGE}(6,7,8,9,10)$ and press Enter. The result will be 8 . To find the average of cells B1 through B10, type $=\operatorname{AVERAGE}(B 1: B 10)$ and press Enter. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The average function is @AVG (array). Example: To find the average of $6,7,8,9$, and 10 , type @AVG $(6,7,8,9,10)$ and press Enter. The result will be 8 . To find the average of cells B1 through B10, type @AVG (B1..B10) and press Enter.

Function or Task	Keystroke(s), Menu, or Screen
BINOMDIST function Microsoft® Excel: =BIN 0 M DIST(x,n,p,FA LSE) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @BIN 0 M DIST($x, n, p, F A L S E)$	The BIN OM DIST function returns the binomial distribution probability of an individual term. It returns the probability of getting exactly x successes in n trials of a binomial distribution, where the probability of success on each trial is p. Example: Consider the rolling of two dice 20 times. What is the probability of rolling exactly four doubles? In this case, $x=4, n=20$, and $p=\frac{1}{6}$. Hence, BIN O M DIST ($4,20,1 / 6$, FA LSE $)$ will return a value of approximately 0.202 .
cell references	See References: relative referencing absolute referencing mixed referencing
Chart feature Insert/ Chart...	To make a chart (graph) select the range of x and y data, then choose Insert/ Chart... . Be sure to select the column headings too. Step through the Chart Wizard/ Expert, supplying the information required. In Corel® Quattro® Pro, you will need to choose an area on the worksheet to put the graph.
combinations function (nCr function) Microsoft® Excel: $=C O M \operatorname{BIN}(n, r)$ Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @COMB(r,n)	Microsoft® Excel: The combinations function is $=C O M \operatorname{BIN}(n, r)$. Example: To find ${ }_{10} C_{7}$ type $=$ CO M BIN $(10,7)$ and press Enter. The result will be 120 . Corel ${ }^{\circledR}$ Quattro ® Pro: The combinations function is @CO $\mathrm{MB}(r, n)$. Example: Notice how the n and r are in counter-intuitive positions. To find ${ }_{10} C_{7}$ type @COMB(7,10) and press Enter. The result will be 120 .

Function or Task	Keystroke(s), Menu, or Screen
CORREL function Microsoft® Excel: =CO RREL(array1, array2) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @CO RREL(array1,array2)	The correlation coefficient for two attributes may be calculated using the CO RREL function. Microsoft® Excel: E xample: Enter the data as shown below. In cell $C 1$, enter $=C O \operatorname{RREL}(A 1: A 5, B 1: B 5)$. The result should be approximately 0.987 . Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Example: Enter the data as shown below. In cell C1, enter @CO RREL(A 1..A5, B1..B5). The result should be approximately 0.987 .

Function or Task	Keystroke(s), Menu, or Screen
COUNTIF function Microsoft® Excel: =CO UN TIF(array,value) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @COUNTIF(array,value)	The COUN TIF function will count the number of cells in an array that match a value. Microsoft® Excel: Example: Enter the data as shown below. In cell $C 1$, enter $=C O$ UN TIF(B1:B6," f " $)$. The result should be 4 . Corel ${ }^{\circledR}$ Quattro ® Pro: Example: Enter the data as shown below. In cell C1, enter @COUN TIF(B1..B6," f "). The result should be 4.

Function or Task	Keystroke(s), Menu, or Screen
FACT(n) function Microsoft ${ }^{\circledR}$ Ex cel: $=F A C T(n)$ Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @FACT(n)	Microsoft ${ }^{\circledR}$ Excel: The factorial (!) function is $=F A C T(n)$. Example: To find 8!, type $=\mathrm{FACT}(8)$ and press Enter. The result will be 40320 . Note: Microsoftt ${ }^{\circledR}$ Excel has a maximum: $170!\doteq 7.3 \times 10^{306}$ Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The factorial (!) function is @FACT(n). E xample: To find 8!, type @FACT(8) and press Enter. The result will be 40320. Note: Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro has a maximum: $170!\doteq 7.3 \times 10^{306}$
Fill feature Microsoft® Excel: Edit/ Fill/ Series... Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Edit/ Fill/ Fill Series...	Many times you need cells filled with a series of numbers. The series of numbers may be linear or a growth. Microsoft® Excel: E xample: Suppose you need to fill a series of cells with a series, such as $2,4,8$, ... 1048 576. Enter 1 into cell A 1. Now, choose cells A 1 through A 21 and select Edit/ Fill/ Series... . Select Growth, enter a step value of 2, and press OK. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Example: Suppose you need to fill a series of cells with a series, such as $2,4,8$, ... 1048 576. Enter 1 into cell A 1. Now choose cells A1 through A 21 and select Edit/ Fill/ Fill Series... . Enter a starting value of 1, a step value of 2, and a stop value of 1048576 (or leave the stop value field blank). Now select Growth and press 0 K .

Function or Task Keystroke(s), Menu, or Screen
filtered search
Microsoft $®$ Excel:
Data/ Filter/ A uto Filter

Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro:

Tools/ Q uickFilter

Quite often it is necessary to display on the screen cells whose value meet a certain criteria.

Microsoft® Excel:

Example:

Enter and then select the data as shown below:

Now choose Data/ Filter/ Auto Filter.

Choose the Gender filter by selecting the down arrow beside the word Gender. Choose " f ". Now, only the females are displayed.

Now choose All under the Gender filter. All names are displayed.
To display only the names that start with a letter greater than "C," choose the N ame filter. Select Custom... . Fill in the dialog box as follows and click on 0 K :

Choose Data/ Filter/ A uto Filter again to turn off the filtering.

Function or Task	Keystroke(s), Menu, or Screen
	Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: E xample: Enter and then select the data as shown below.
	Now choose Tools/ Q uickFilter.
	Choose the Gender filter by selecting the down arrow beside the word Gender. Choose " f ". Now, only the females are displayed.
	To display only the names that start with a letter greater than "C," choose the N ame filter. Select Custom... . Fill in the dialog box as follows and click on OK :
	Deverthen -d
	Choose Tools/ Q uickFilter again to turn off the filtering.

Function or Task	Keystroke(s), Menu, or Screen
Fraction feature Microsoft ${ }^{\circledR}$ Excel: Format/ Cells... / Fraction Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Format/ Selection... / Numeric Format/ Fraction	Microsoft ${ }^{\circledR}$ Excel: To display real numbers as fractions, select the cells and then use Format/ Cells... / Fraction. Within the dialog box, choose the type of fraction required. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: To display real numbers as fractions, select the cells and then use Format/ Selection... / N umeric Format/ Fraction. Within the dialog box, set the denominator required.
INT function Microsoft ${ }_{\circledR}$ Excel: $=I N T(n)$ Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @IN T(n)	Microsoft® Excel: The integer truncation function is $=\operatorname{IN} T(n)$. Example: To convert 8.7 to an integer, type $=\operatorname{IN} T(8.7)$ and press Enter. The result will be 8 . Note: The IN T function simply removes the decimal portion of the number without rounding. It is recommended that you use the ROUND function if rounding is required. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The integer truncation function is @INT(n). Example: To convert 8.7 to an integer, type @IN T(8.7) and press Enter. The result will be 8 . Note: The IN T function simply removes the decimal portion of the number without rounding. It is recommended that you use the ROUND function if rounding is required.
inverse matrices	See Matrices: inverse
linear regression	See line of best fit

Function or Task	Keystroke(s), Menu, or Screen
line of best fit	Microsoft ${ }^{\circledR}$ Excel: In Microsoft® Excel, set up a table with the data for which you wish to determine the line of best fit. Use the CO RREL function to calculate the correlation coefficient. Use the Chart feature to create a scatter plot. Find the line of best fit by selecting Chart/ Add Trendline. Check that the default setting is Linear. Select the straight line that appears on your chart, then click Format/ Selected Trendline/ O ptions. Check the Display equation on chart box. You can also display r^{2}. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: In Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro, set up a table with the data you wish to determine the line of best fit for. Use the CO RREL function to calculate the correlation coefficient. Use the Chart feature to create a scatter plot. Find the line of best fit by selecting Tools/ N umeric Tools/ Regression. Enter the cell ranges for the data, and the program will display regression calculations including the constant (b), the x-coefficient (or slope, a), and r^{2}.
Matrices: addition and subtraction	Microsoft ${ }^{\circledR}$ Excel: Set up your spreadsheet as follows:

Function or Task

Matrices: inverse

Microsoft® Excel:

=IN DEX(array, row, col)
=M IN VERSE(array)

Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro:

@A RRAY (array) @M IN VERSE(array)

Keystroke(s), Menu, or Screen

Microsoft® Excel:

In Microsoft ${ }^{\circledR}$ Excel, two functions are required to obtain the inverse of a matrix. The first function is IN DEX (array, row, col) and the second is M IN VERSE(array). The MIN VERSE function creates a second array that is the inverse of a given array. The IN DEX function allows you to specify the row/column of the matrix element to display. That is, you need not display the entire inverse of a matrix, but rather you can choose to display any individual element.

Set up your spreadsheet as follows:

L13 * \quad -											
	A	B	C	D	E	F	,	H			K
2				A					A^{\prime}		
4			1	0	1						
4				3	2						
5				-1	0						

In cell H3, type: =IN DEX(M IN VERSE(\$C\$3:\$E\$5),1,1)
In cell I3, type: =IN DEX(M IN VERSE(\$C\$3:\$E\$5),1,2)
In cell J3, type: =IN DEX(M IN VERSE(\$C\$3:\$E\$5),1,3)
Be sure to use absolute cell referencing as indicated by the " $\$$ ". Notice how the column number changes as you move from left to right. Copy this row down two more rows. Change the row number for each subsequent row as you did the column number in the examples above. The result should be as follows:

Function or Task	Keystroke(s), Menu, or Screen
	Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Corel® Quattro® Pro 8 uses two functions to find the inverse of a matrix, ARRAY(array) and M IN VERSE(array). The MIN VERSE function creates a second array that is the inverse of a given array. The ARRAY function retrieves the resulting individual row/column elements and displays them in an array. Set up your spreadsheet as follows: In cell H4, type: @A RRAY(@M IN VERSE(C4..E6)) The result should be as follows: In Corel® Quattro® Pro 9, use Tools/ N umeric Tools/ Invert instead.

Function or Task

Matrices:
multiplication

Microsoft® Ex cel:

=IN DEX(array, row, col)
=M MULT(array1,array2)

Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro:

@A RRAY(array) @M MULT(array1,array2)

Keystroke(s), Menu, or Screen

Microsoft® Excel:

In Microsoft $®$ Excel, two functions are required to multiply matrices. The first function is IN DEX (array, row, col) and the second is M MULT(array1, array2). The M MULT function creates a third array that is the result of multiplying two matrices. The IN DEX function allows you to specify the row/column of the matrix element to display. That is, you need not display the entire inverse of a matrix, but rather you can choose to display any individual element.

Set up your spreadsheet as follows:

In cell K3, type: =IN DEX(M M ULT(\$C 3 3:\$E\$4,\$G \$3:\$H\$5),1,1)
In cell L3, type: =IN DEX(M M ULT(\$C 3 :\$ $\$ 4, \$ \mathrm{G} \$ 3: \$ \mathrm{H} \$ 5), 1,2)$
Be sure to use absolute cell referencing as indicated by the "\$". Notice how the column number changes as you move from left to right.
Copy this row down one more row. Change the row number for this subsequent row as you did the column number in the examples above.
The result should be as follows:

Function or Task	Keystroke(s), Menu, or Screen
	Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Corel® Quattro® Pro 8 uses two functions to multiply matrices, ARRAY(array) and MMULT(array1, array2). The MMULT function creates a third array that is the result of multiplying two matrices. The ARRAY function retrieves the resulting individual row/column elements and displays them in an array. Set up your spreadsheet as follows: In cell K3, type: @ARRAY(@MMULT(C3..E4,G 3..H5)) The result should be as follows: In Corel® Quattro® Pro 9, use Tools/ N umeric Tools/ M ultiply instead.

Matrices：scalar multiplication

Microsoft® Excel：

Set up your spreadsheet as follows：

In cell J3，type：$=\$ \mathrm{~B} \$ 4 * \mathrm{E} 3$ ．Be sure to use absolute cell referencing as indicated by the＂$\$$＂．Copy this formula across to L3．Now copy J3 to L3 down to J6 to L6．The result should be as follows：

Pracreselt Encer－Bmat												
				BQ		χ 加而				$n-\cdots$		
				－ 10 －		B t		U		业》国家		
	13			$=-\left\{834^{\circ} \mathrm{E}\right\}^{\text {a }}$								
	A	B	C	D	E	F	G	H	1	J	K	1
1												
2		k				A					目	
3					14	10	12			［4］	30	36
4		3			12	14	10			35	42	30
5					8	7	5			24	21	15
5					18		14				45	42

Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro：

Set up your spreadsheet as follows：

Function or Task	Keystroke(s), Menu, or Screen
	In cell J3, type: $+\$ \mathrm{~B} \$ 4 * \mathrm{E} 3$. Be sure to use absolute cell referencing as indicated by the " $\$$ ". Copy this formula across to L3. Now copy J3 to $L 3$ down to J6 to L6. The result should be as follows:
Matrices: storing	Microsoft® Excel: You store a matrix in Microsoft ${ }^{\circledR}$ Excel as you would any array. Simply enter the matrix (array) into whichever cells you wish to use. A sample matrix (array) is shown: Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: You store a matrix in Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro as you would with any array. Simply enter the matrix (array) into whichever cells you wish to use. A sample matrix (array) is shown:

Function or Task	Keystroke(s), Menu, or Screen
	Select and copy the matrix. Choose the location for the transpose of the matrix. From the Edit menu choose Paste Special... . In the Paste Special... dialog box choose Transpose Rows and Columns and then OK. The result should be as follows:
MAX function Microsoft® Excel: =MAX(array) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @MAX(array)	Microsoft ${ }_{\circledR}$ Excel: The maximum value function is $=\mathrm{MAX}$ (array). Example: To determine the maximum value in a series of cells such as from A1 to $A 15$, enter $=\operatorname{MAX}(A 1: A 15)$ and press Enter. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The maximum value function is @MAX(array). Example: To determine the maximum value in a series or matrix such as from cell A1 to A15, enter @MAX(A1..A15) and press Enter.
matrix operations	See Matrices: addition and subtraction Matrices: inverse Matrices: multiplication Matrices: scalar multiplication Matrices: storing Matrices: transpose

Function or Task	Keystroke(s), Menu, or Screen
mean Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @M EAN (array) See also average.	Microsoft ${ }^{\circledR}$ Excel: See average. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The mean value function is @M EAN (array). E xample: To determine the mean value in a series of cells such as from A1 to A15, enter @MEAN (A1..A15) and press Enter.
median Microsoft ${ }^{\circledR}$ Ex cel: =M EDIA N (array) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @M EDIAN (array)	Microsoft® Excel: The median function is =M EDIAN (array). E xample: To find the median of $6,7,8,9$, and 10 , type $=\operatorname{MEDIAN}(6,7,8,9,10)$ and press Enter. The result will be 8 . To find the median of cells B1 through B10, type $=$ M EDIAN $(B 1: B 10)$ and press Enter. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The median function is @MEDIAN (array). Example: To find the median of $6,7,8,9$, and 10 , type @M EDIAN $(6,7,8,9,10)$ and press Enter. The result will be 8 . To find the median of cells B1 through B10, type @M EDIAN (B1..B10) and press Enter.
mode Microsoft ${ }^{\circledR}$ Excel: =M O DE(array) Corel ${ }^{\circledR}$ Quattro ® Pro: @M ODE(array)	Microsoft ${ }^{\circledR}$ Excel: The mode function is $=\mathrm{MODE}$ (array). E xample: To find the mode of $6,7,8,9$, and 10 , type $=\operatorname{MODE}(6,7,8,8,9,10)$ and press Enter. The result will be 8 . To find the mode of cells B1 through B10, type $=M O D E(B 1: B 10)$ and press Enter.

Function or Task	Keystroke(s), Menu, or Screen
	Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The mode function is @MODE(array). Example: To find the mode of $6,7,8,9$, and 10 , type @M $O \operatorname{DE}(6,7,8,8,9,10)$ and press Enter. The result will be 8 . To find the mode of cells B1 through B10, type @MODE(B1..B10) and press Enter.
multiplying matrices	See Matrices: multiplication Matrices: scalar multiplication
NORMDIST function Microsoft® Excel: =N O RM DIST(boundary, mean, standard deviation,TRUE) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @N O RM DIST(boundary, mean, standard deviation,1)	Microsoft® Excel: The N O RM DIST(boundary, mean, standard deviation,TRUE) function allows you to calculate the probability that a given data point lies within a boundary using a normal distribution with a given mean and standard deviation. To calculate the probability that a given data point lies between a lower boundary and an upper boundary, set up your spreadsheet as follows: In cell C8, type: $=N 0$ RM DIST(C3,C4,C5,TRUE) to find the upper boundary probability. In cell C9, type: $=N O$ RM DIST(C2,C4,C5,TRUE) to find the lower boundary probability. In cell C10, type: $=$ C8-C9 to find the probability that a given data point lies between a lower boundary and an upper boundary.

The result should be as follows:

Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro:

The @N O RM DIST(boundary, mean, standard deviation,1) function allows you to calculate the probability that a given data point lies within a boundary using a normal distribution with a given mean and standard deviation.

To calculate the probability that a given data point lies between a lower boundary and an upper boundary, set up your spreadsheet as follows:

In cell C9, type: @N 0 RM DIST(C3,C4,C5,1) to find the upper boundary probability.
In cell C10, type: @N 0 RM $\operatorname{DIST}(C 2, C 4, C 5,1)$ to find the lower boundary probability.
In cell C11, type: +C9-C10 to find the probability that a given data point lies between a lower boundary and an upper boundary.

Function or Task	Keystroke(s), Menu, or Screen
	The result should be as follows:
permutations function (nPr function) Microsoft® Excel: $=\operatorname{PERMUT}(n, r)$ Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @PERMUT(n,r)	Microsoft ${ }^{\circledR}$ Excel: The permutations function for Microsoft ${ }^{\circledR}$ Excel is $=\operatorname{PERMUT}(n, r)$. Example: To find ${ }_{10} P_{7}$, type $=\operatorname{PERMUT}(10,7)$ and press Enter. The result will be 604800. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The permutations function for Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro is @PERMUT(n,r). Notice that, unlike the combinations function, the n and r are in intuitive positions. Example: To find ${ }_{10} P_{7}$, type @PERM UT $(10,7)$ and press Enter. The result will be 604800 .
RAND function	See random integers random real numbers

Function or Task	Keystroke(s), Menu, or Screen
random integers Microsoft ${ }^{\circledR}$ Excel: $=$ lower+round(diff*rand(),0) or =RA N DBETW EEN (lower, upper) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @RAN DBETW EEN (lower, upper)	Microsoft ${ }^{\circledR}$ Excel: To generate random integers, use the formula $=$ lower+round(diff*rand(),0). The variable diff $=$ upper - lower . Example: To generate a random integer from 6 to 10, type $=6+\text { round }(4 * \operatorname{rand}(), 0)$ You can copy this formula to other cells to generate more random integers. Note: You can use the RAN DBETW EEN (lower, upper) function only if you have installed the Analysis ToolPak. If this function is not available, run the Setup program to install the Analysis ToolPak. After you install the Analysis ToolPak, you must enable it by using the Add-Ins command on the Tools menu. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: To generate random integers, use the formula @RAN DBETW EEN (lower,upper) E xample: To generate a random integer from 6 to 10, type @RAN DBETW EEN $(6,10)$ You can copy the formula to other cells to generate more random integers.
random real numbers Microsoft ${ }^{\circledR}$ Excel: $=R A N D()$ Corel ${ }^{\circledR}$ Quattro ® Pro: @RAND	Microsoft ${ }^{\circledR}$ Excel: To generate random real numbers, use the formula $=$ RAN $D()$. There is no argument for this function. Simply type the function into any cell. $=$ RA N $D($) will generate a real number from 0 to 1 . $=6 *$ RAND() will generate a real number from 0 to 6 . Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: To generate random real numbers, use the formula @RAND. There is no argument for this function. Simply type the function into any cell. @RAND will generate a real number from 0 to 1 . @RAND*6 will generate a real number from 0 to 6 .

Function or Task reference data from cells in another worksheet	To reference data that exist in another worksheet or file is very similar to accessing data on a single worksheet. Microsoft® Excel: Example: Suppose that you have two worksheets. Set cell B2 in Sheet 2 equal to cell A 1 in Sheet 1. Select cell B2 on Sheet 2 (where the data are going). Press "=". Select Sheet 1 and then cell A 1 and press Enter. Cell B2 on Sheet 2 will now be equal to cell A 1 on Sheet 1. The formula in cell B2 on Sheet 2, will be =Sheet1 !A 1.
Corel ® Quattro ® Pro:	
Example:	
Suppose that you have two worksheets. Set cell B2 in Sheet B equal to	
cell A1 in Sheet A. Select cell B2 on Sheet B (where the data are going).	
Press "+". Select Sheet A and then cell A 1 and press Enter. Cell B2 on	
Sheet B will now be equal to cell A1 on Sheet A. The formula in cell B2	
on Sheet B will be +A :A 1.	

Function or Task	Keystroke(s), Menu, or Screen
relative cell referencing	See References: relative referencing absolute referencing mixed referencing
ROUND function Microsoft® Excel: $=$ RO UN D (n, d) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @ROUND(n,d)	Microsoft® Excel: The rounding function is $=\operatorname{RO} \cup N D(n, d)$. E xample: To round 8.787 to the nearest tenth, type $=\operatorname{RO} \operatorname{UN} D(8.787,1)$ and press Enter. The result will be 8.8. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The rounding function is @ROUND(n,d). E xample: To round 8.787 to the nearest tenth, type @ROUND $(8.787,1)$ and press Enter. The result will be 8.8 .
search	The search function is accessed by choosing Find... from the Edit menu or by pressing CTRL-F.
Sort feature Microsoft® Excel: Data/ Sort. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Tools/ Sort.	Microsoft® Excel: The sort feature is available through the Data menu. Select the range of cells you wish to sort, then choose Data/ Sort.... Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The sort feature is available through the Tools menu. Select the range of cells you wish to sort then choose Tools/ Sort....

Function or Task	Keystroke(s), Menu, or Screen
standard deviation Microsoft ${ }^{\circledR}$ Excel: Population =STDEVP(array) Sample =STDEV (array) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Population @STD(array) Sample @STDS(array)	Microsoft ${ }^{\circledR}$ Excel: The standard deviation function is =STDEV (array). Example: Determine the standard deviation of a sample listed in cells from A 1 to A15. Enter $=\operatorname{STDEV}(\mathrm{A} 1: \mathrm{A} 15)$ and press Enter. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The standard deviation function is @STDS(array). Example: Determine the standard deviation of a sample listed in cells from A 1 to A15. Enter @STDS(A 1..A 15) and press Enter.
SUM function Microsoft ${ }^{\circledR}$ Excel: =SUM (array) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: @SUM (array)	Microsoft® Excel: Example: Determine the sum of a series of cells such as from A1 to A15. Enter $=\operatorname{SUM}(\mathrm{A} 1: \mathrm{A} 15)$ and press Enter. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Example: Determine the sum of a series of cells such as from A1 to A15. Enter @SUM (A1..A15) and press Enter.
Variance Microsoft® Excel: Population =VA RP(array) Sample =VA R(array) Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: Population @VAR(array) Sample @VARS(array)	Microsoft® Excel: The variance function is =VAR(array). Example: To find the sample variance of $6,7,8,9$, and 10 , type $=\operatorname{VAR}(6,7,8,9,10)$ and press Enter. The result will be 1.142857 . To find the sample variance of cells B1 through B10, type $=\operatorname{VAR}(B 1: B 10)$ and press Enter. Corel ${ }^{\circledR}$ Quattro ${ }^{\circledR}$ Pro: The variance function is @VAR(array). Example: To find the sample variance of $6,7,8,9$, and 10 , type @VARS $(6,7,8,9,10)$ and press Enter. The result will be 1.142857. To find the sample variance of cells B1 through B10, type @VARS(B1..B10) and press Enter.

Fathom ${ }^{\text {m }}$

Keystroke(s), Menu, or Screen

binomialCumulative() function

binomialCumulative (x, n, p, min,max)

The binomialCumulative() function is found under the Functions/ Distributions/ Binomial menu. This function returns the probability of getting x or fewer successes in n trials of a binomial distribution where the probability of success on each trial is p. Normally, x will take on values from 0 to n. However, if min and max are specified, then the value of x will go from min to max in steps of $(\max -\min) / n$.

E xample:

Consider the rolling of two dice 20 times. What is the probability of rolling up to four doubles?

In this case, $x=4, n=20$ and $p=\frac{1}{6}$. Hence, binomialCumulative $(4,20,1 / 6)$ will return a value of approximately 0.769 .

You can use this function in a case table to create a table of cumulative probabilities as shown in the following screen:

Function or Task
$\begin{array}{l}\text { binomial Probability() } \\ \text { function }\end{array}$

binomialProbability $(x, n, p$, $\min , \max)$

The binomialProbability() function is found under the Functions/ Distributions/ Binomial menu. It returns the probability of getting exactly x successes in n trials of a binomial distribution, where the probability of success on each trial is p.

E xample:

Consider 20 rolls of 2 dice. What is the probability of rolling exactly four doubles?
In this case, $x=4, n=20$, and $p=\frac{1}{6}$.
Hence, binomialProbability $(4,20,1 / 6)$ will return a value of approximately 0.202 .
You can use this function in a case table to create a table of probabilities as shown in the following screen:

caseIndex function

case table

The caseIndex function located under Functions/ Special menu is like the "row number" in a spreadsheet.

E xample:

Suppose that you want an attribute which runs from 1 to 20, perhaps to be used in the calculation of another attribute. Start Fathom and open a new document if necessary. Drag a collection box to the workspace. Drag a case table to the workspace. Double-click on <new> and rename it Index. Right-click on the case table, select N ew Cases and type in 20. Notice that the Index attribute is now numbered from 1 to 20 , as shown in the following screen:

Cotacton 1

Fathom keeps data for a particular collection in a case table which is linked to that collection.

Run Fathom and open a new document, if necessary. Drag a collection box to the workspace. Note that it is called Collection 1. Now, drag a case table to the workspace. Notice that it is linked to Collection 1.

Now that you have a case table, you can specify the attributes you want to keep track of. Suppose that this collection will contain information about the CDs that you own. One attribute might be the title of the CD. Double-click on <new>, and type in Title. Under Title, you can type the CD titles that you own.

Function or Task	Keystroke(s), Menu, or Screen
	Your screen should look like this: In a similar manner you can add other attributes, like A rtist, N umber of Tracks, or whatever else is important. Data can also be copied from other Windows applications to the clipboard, and pasted into a case table.
collection	Fathom keeps track of data entered using the collection metaphor. Each collection is identified by a collection box that may be named in such a way as to identify the collection. For example, suppose that you wanted to keep track of your CD collection in Fathom. Start Fathom and open a new document, if necessary. Drag a collection box to the workspace. Notice that its default name is Collection 1. Double-click on the name. In the dialog box, type an appropriate name, like CD Collection. You can now add a case table with appropriate attributes for your collection.
combinations function combinations(n,r)	The combinations function or ${ }_{n} C_{r}$ is combinations (n, r). Example: To evaluate the number of subsets of 10 objects taken 7 at a time, or 10 choose 7 , make a new collection and create a case table as follows: Right click on the nCr attribute and choose Edit Formula. Now choose Functions/ Arithmetic/ Combinations. Double-click on Combinations. Choose Attributes and double-click on n. Press "," and then doubleclick on r. Click on A pply and then click on 0 K. You will see:

correlation coefficient

The correlation coefficient for two attributes may be calculated using the correlation function under the Functions/ Statistical/ Two A tributes menu.

E xample:

Create a collection and case table for Height versus ShoeSize, as shown in the screen shot below. Double click on the collection box to open the inspector, and select the M easures tab. Create a <new> measure called Correlation. Right-click under the Formula column in the Correlation row, and select Edit Formula. Select the correlation function under the Functions/ Statistical/ Two A tributes menu, and type Height,ShoeSize between the brackets. Click OK. Note that you get a correlation coefficient of about 0.987 between Height and ShoeSize.

filter

A filter may be added to an object in order to select only a subset of the data that is of interest.

E xample:

Create a collection and a case table as shown in the screen shot below:

Suppose that you want to show only shoe sizes greater than 10 . Click on the case table to select it, and select Add Filter from the Data menu. Then, type in the condition ShoeSize>10 and click on OK. You will see:

Keystroke(s), Menu, or Screen

graph icon
The graph icon is the third selection on the shelf, to the right of the collection box icon and the case table icon, as shown in the screenshot below:

You can create a new graph by clicking on the graph icon, holding the left mouse button down, and dragging it onto the workspace. You can then drag attributes from a case table to the axes of the graph.

inspector

The inspector for a collection can be opened by double-clicking on the collection box. A new window will appear, with several panes. The first pane is the Cases pane, as shown in the following screen:

This pane allows you to inspect the collection case by case, and is particularly useful for collections that have many attributes.
The second pane is the M easures pane, which allows you to define measures for the collection, such as the mean, and correlation coefficient, some of which are described elsewhere in this appendix.

interquartile range
rer

iqr(attribute)

The third pane is the Comments pane, which allows you to add comments relevant to the collection, as shown below:

The last pane is the Display pane, which allows you to control how the data for a collection appears on the screen. More detail on how to program this feature is available in the Fathom ${ }^{\mathrm{TM}}$ Reference Manual.

The interquartile range function found under the Functions/ Statistical/ 0 ne A tribute menu is used to calculate the interquartile range for an attribute.

Example:

Create a collection and case table as shown in the following screen:

Double-click on the collection box to open the inspector for the collection, and select the M easures tab. Rename <new> to InterQ uartile. Right-click on the Formula column for the InterQ uartile measure, and select Edit Formula. Select the iqr() function under the Functions/ Statistical/ O ne A ttribute menu, and type M arks between the brackets. You will see the interquartile range calculated under Value, as in the screen shown above.

Function or Task	Keystroke(s), Menu, or Screen
linear regression	Fathom ${ }^{\mathrm{TM}}$ generates a linear regression line and values when it graphs data. Set up a new collection as follows: Graph the data as follows: Right-click on the graph and choose Least-Squares Line. The graph displays an equation of best fit with $a=2.91$ and $b=1.2$. The graph also shows the coefficient of determination, r^{2}.
line of best fit	See linear regression.

mean

The mean function found under the Functions/ Statistical/ O ne A tribute menu is used to calculate the mean of an attribute.

E xample:

Create a collection and case table as shown in the following screen:

Double-click on the collection box to open the inspector for the collection, and select the M easures tab. Rename <new> to M ean. Right-click on the Formula column for the M ean measure, and select Edit Formula. Select the mean() function under the Functions/ Statistical/ O ne A tribute menu, and type Size between the brackets. You will see the mean calculated under Value, as in the screen shown above.

Keystroke(s), Menu, or Screen

non-linear regression

Fathom does not have built-in non-linear regression functions. However, you can plot functions on top of a scatter plot and even control parameters using sliders, in an attempt to match a function to the scatter plot.

E xample:

Create a collection, case table, and graph as shown in the screen shot below:

It looks like the relation might be quadratic. To try a fit, select the graph, and then select Plot Function from the Graph menu. You can now enter a formula for Distance as a function of Velocity. You might type in $.09 \times$ Velocity ${ }^{2}$. If this formula does not work, you can try another coefficient. However, a more convenient way to do it is to use a Slider. Drag a Slider from the shelf to the workspace, and rename it a. Select Plot Function from the Graph menu, and enter the formula aVelocity ${ }^{2}$.

Adjust the values on the slider until the function appears to match your scatter plot the best. If the quadratic function does not work, you can try other functions.

normalCumulative function

normalCumulative
(x, mean, standard deviation)

The normalCumulative function located under the Functions/ Distributions/ Normal menu allows you to calculate the probability that a given data point is less than X using a normal distribution with a given mean and standard deviation.

E xample:

Suppose that a particular model of tire has a lifetime with a mean of 64000 km and a standard deviation of 8000 km . What is the probability that a tire will wear out at 60000 km or less?
Create a collection and a case table as shown in the following screen:

Right-click on the Probability attribute, and select the normalCumulative function under the Function/ Distributions/ Normal menu. Type Distance, 64000,8000 between the brackets. You will get a probability of approximately 0.309 .

normalQuantile function

normalQ uantile(p, mean, standard deviation)

quartiles

The normalQ uantile function located under the Functions/ Distributions/ Normal menu is the opposite of the normalCumulative function. Given a probability p , it allows you to calculate the value of x using a normal distribution with a given mean and standard deviation such that the probability that a given data point is less than or equal to x is p.

E xample:

Suppose that a particular model of tire has a lifetime with a mean of 64000 km and a standard deviation of 8000 km . What distance will see 25% of the tires wear out?
Create a collection and a case table as shown in the following screen:

Right-click on the Distance attribute, and select the normalQ uantile function under the Functions/ Distributions/ Normal menu. Type Probability,64000,8000 between the brackets. You will get a distance of approximately 58604 km .

The quartile functions in Fathom ${ }^{\mathrm{TM}}$ are Q 1 and Q 3, found under the Functions/ Statistical/ O ne A tribute menu.
E xample:
Create a collection and case table as shown in the following screen:

Function or Task	Keystroke(s), Menu, or Screen
	Double-click on the collection box to open the inspector for the collection, and select the M easures tab. Rename <new> to Q 1 . Right-click on the Formula column for the Median measure, and select Edit Formula. Select the Q 1 function under the Functions/ Statistical/ One Attribute menu, and type Marks between the brackets. You will see the first quartile calculated under Value, as shown in the screen shown above. You can calculate Q 3 in a similar manner.
random function random()	Fathom ${ }^{\text {TM }}$ has 17 different random functions. random() will generate a random real number from 0 to 1 . E xample: Generate ten random numbers from 0 to 1 . Open a new collection. Create a new case table. Double-click on the <new> attribute and rename it Random. To add ten new cases, right-click on the Random attribute and select New Cases... . Type in 10 and press Enter. Right-click on the Random attribute and choose Edit Formula. Choose Functions. Double-click on random. Choose OK. You now have 10 random real numbers between 0 and 1 .
randomInteger function randomInteger(lower, upper)	The randominteger function will generate random integers from lower to upper. Example: Generate 20 random numbers from 6 to 10 . Open a new collection. Create a new case table. Double-click on the <new > attribute and rename it RandomInt.

randomNormal function

randomN ormal(mean, standard deviation)

Now choose Functions.
Double-click on randominteger().
Type 6,10 between the brackets.
Choose OK.
You now have 20 random numbers between 6 and 10 .
To add 20 new cases, right-click on the Randomint attribute and select New Cases... .
Type in 20 and press Enter.
To generate the random numbers, right-click on the Randomint attribute and choose Edit Formula.

The randomN ormal function will generate random numbers from a normal distribution with a given mean and a given standard deviation.

Example:

Generate 20 random numbers from a normal distribution with a mean of 100 and a standard deviation of 10 .

Open a new collection.
Create a new case table.
Double-click on the <new> attribute and rename it RandomNorm.
To add 20 new cases, right-click on the RandomN orm attribute and select New Cases....
Type in 20 and press Enter.
To generate the random numbers, right-click on the RandomN orm attribute and choose Edit Formula.

Gellacten 1

Choose Functions.
Double-click on randomNorm().
Type 100,10 between the brackets.
Choose OK.
You now have 20 random numbers from a normal distribution with a mean of 100 and a standard deviation of 10 .

Function or Task	Keystroke(s), Menu, or Screen
scatter plot	You can draw a scatter plot by dragging attributes from a case table to a graph. Example: Create a collection and a case table as shown in the following screen: Drag the graph icon from the shelf to the workspace. Drag the Mass attribute to the horizontal axis of the graph. Drag the FuelBurn attribute to the vertical axis of the graph. You will see:
semi-interquartile range	The semi-interquartile range is one half of the interquartile range. See interquartile range.

You can sort the entries in a case table using the Sort Ascending and Sort Descending functions under the Data menu.

E xample:

Create a collection and case table as shown in the following screen:

Click on the Test attribute to select the attribute column. Click on the Data menu, and select Sort Ascending.

If you want the data sorted in descending order, then select Sort Descending from the Data menu.

Function or Task	Keystroke(s), Menu, or Screen
	Double-click on the collection box to open the inspector, and rename <new > to Sum. Right-click the Formula column at the Sum row and select Edit Formula. Select the sum function under the Functions/ Statistical/ O ne A ttribute menu and type Test between the brackets. You will see the value of 366 under the Value column.
uniqueRank() function	The uniqueRank() function under the Functions/ Statistical/ Transformations menu is used to rank the entries in an attribute column of a case table. Example: Create a collection and a case table as shown in the following screen: Right-click on the Rank attribute, and select Edit Formula. Select uniqueRank() from the Functions/ Statistical/ Transformations menu and type ShoeSize between the brackets. The Rank attribute will now show the ranking of each entry under the ShoeSize attribute. Note: If the ShoeSize attribute is sorted before applying the uniqueRank() function, then the ranks will be in order.

zScore function

also known as sampleZscore

The zScore function under the Functions/ Statistical/ Transformations menu calculates how many sample standard deviations a value is from the mean. For example, if a sample has a mean of 100 and a standard deviation of 10 , then a value of 120 would have a zScore of 2 .

E xample:

Create a collection and a case table as shown in the following screen:

Right-click on the zScore attribute, and select Edit Formula. Select zScore() from the Functions/ Statistical/ Transformations menu and type W echsler between the brackets. The zScore for each entry in the W echsler attribute is now displayed in the zScore attribute column.

