Key Equations

Matrix Operations

Transpose $A_{m \times n}^{t} = B_{n \times m}$, where $b_{ij} =$	$\begin{aligned} & \mathbf{Scalar} \ \mathbf{N} \\ & a_{ji} \\ & kA = C, \end{aligned}$	Multiplication where $c_{ij} = ka_{ij}$	Addition $A + D = E$, where $e_{ij} = a_{ij} + d_{ij}$		
Multiplication $A_{m \times n} F_{n \times p} = G_{m \times p}$, where	$g_{ij} = \sum_{k=1}^{n} a_{ik} f_{kj}$	Inverse For $H = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, H	$T^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ if $ad \neq bc$		
Statistics of One Variable					
	Population	Sample	Weighted Mean		
Mean:	$\mu = \frac{\sum x}{N}$	$\overline{x} = \frac{\sum x}{n}$	$\overline{x}_w = rac{\sum w_i x_i}{\sum w_i}$		
Variance:	$\sigma^2 = \frac{\sum (x-\mu)^2}{N}$	$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$			
Standard Deviation:	$\sigma = \sqrt{\frac{\Sigma(x-\mu)^2}{N}}$	$s = \sqrt{\frac{\sum(x - \overline{x})^2}{n - 1}}$			
		$=\sqrt{\frac{n\sum x^2 - (\sum x^2)}{n(n-1)}}$	x^2		
Z-score:	$z = \frac{x - \mu}{\sigma}$	$z = \frac{x - \overline{x}}{s}$			
Grouped Data:	$\mu \doteq \frac{\sum f_i m_i}{\sum f_i}$	$\overline{x} \doteq \frac{\sum f_i m_i}{\sum f_i}$, when	re m_i is midpoint of <i>i</i> th interval		
	$\sigma \doteq \sqrt{\frac{\sum f_i(m_i - \mu)^2}{N}}$	$s \doteq \sqrt{\frac{\sum f_i(m_i - \overline{x})}{n-1}}$	<u>)²</u>		

Statistics of Two Variables

Correlation Coefficient $r = \frac{s_{XY}}{s_X s_Y}$ $= \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}}$

$$y = ax + b$$
, where $a = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$ and $b = \overline{y}$

Least Squares Line of Best Fit

$$r^{2} = \frac{\sum (y_{est} - \overline{y})^{2}}{\sum (y - \overline{y})^{2}}$$

Permutations and Organized Counting

Factorial: $n! = n \times (n-1) \times (n-2) \times \ldots \times 3 \times 2 \times 1$

Permutations

r objects from *n* different objects: $_{n}P_{r} = \frac{n!}{(n-r)!}$

n objects with some alike:
$$\frac{n!}{a!b!c!\dots}$$

 $-a\overline{x}$

Combinations and the Binomial Theorem

Combinations

r items chosen from *n* different items: ${}_{n}C_{r} = \frac{n!}{(n-r)!r!}$ at least one item chosen from *n* distinct items: $2^{n} - 1$ at least one item chosen from several different sets of identical items: $(p+1)(q+1)(r+1) \dots -1$ Pascal's Formula: ${}_{n}C_{r} = {}_{n-1}C_{r-1} + {}_{n-1}C_{r}$ Binomial Theorem: $(a+b)^{n} = \sum_{r=0}^{n} {}_{n}C_{r}a^{n-r}b^{r}$

Introduction to Probability

Equally Likely Outcomes: $P(A) = \frac{n(A)}{n(S)}$ Odds: odds in favour of $A = \frac{P(A)}{P(A')}$

Complement of A: P(A') = 1 - P(A)

If odds in favour of $A = \frac{h}{k}$, $P(A) = \frac{h}{h+k}$

Conditional Probability: $P(A | B) = \frac{P(A \text{ and } B)}{P(B)}$ Independent Events: $P(A \text{ and } B) = P(A) \times P(B)$ Dependent Events: $P(A \text{ and } B) = P(A) \times P(B | A)$ Mutually Exclusive Events: P(A or B) = P(A) + P(B)Non-Mutually Exclusive Events: P(A or B) = P(A) + P(B) - P(A and B)Markov Steady State: $S^{(n)} = S^{(n)}P$

Discrete Probability Distributions

Expectation: $E(x) = \sum_{i=1}^{n} x_i P(x_i)$		
Discrete Uniform Distribution: $P(x)$	$f(x) = \frac{1}{n}$	
Binomial Distribution:	$P(x) = {}_{n}C_{x}p^{x}q^{n-x}$	E(x) = np
Geometric Distribution:	$P(x) = q^{x}p$	$E(x) = \frac{q}{p}$
Hypergeometric Distribution:	$P(x) = \frac{\frac{a}{a} C_x \times \frac{a}{n-a} C_{r-x}}{\frac{a}{n} C_r}$	$E(x) = \frac{ra}{n}$

Continuous Probability Distributions

Exponential Distribution: $y = ke^{-kx}$, where $k = \frac{1}{\mu}$ Normal Distribution: $y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ Normal Approximation to Binomial Distribution: $\mu = np$ and $\sigma = \sqrt{npq}$ if np > 5 and nq > 5Distribution of Sample Means: $\mu_{\overline{x}} = \mu$ and $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$ Confidence Intervals: $\overline{x} - z\frac{\alpha}{2}\frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z\frac{\alpha}{2}\frac{\sigma}{\sqrt{n}}$ $\hat{p} - z\frac{\alpha}{2}\frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$