

How would we be able to find the line of best fit for data that is supposed to be curved?

This is **non-linear** regression!

In most cases we don't know what the value of a certain point would be on a line of best fit, so we have to guess! It becomes an estimate.

Modern technology can help us out a lot by finding the info for us. It even provides us with r^2 which is how closely any type of regression curve fits the data.

 r^2 is the **coefficient of Determination** defined as

Variation in y explained by variation in $x = r^2$ Total variation in y

$$r^{2} = \frac{\sum (y_{\text{est}} - \overline{y})^{2}}{\sum (y - \overline{y})^{2}}$$

y = given by on

 \overline{y} is the mean y value

is the y value estimated by the best-fit curve for a given x value (45ing 2746 tion)

y is the <u>actual</u> observed value for a given x value

The total variation is the sum of the squares of the deviations for all of the individual data points.

If the curve is a perfect fit, y_{est} and y will be identical for each value of x, and $r^2 = 1$.

If the curve is a poor fit, the total of $(y_{\text{est}} - y)^2$ will be smaller than the total of $(y - y)^2$, \leftarrow therefore r^2 will be close to 0. The curve of best fit will be the one that has the highest value for r^2 . r^2 can only have values from 0 to 1.

Power or Polynomial Regression

•uses the line of $y = ax^b$ as the line that models the information. $y = ax^b$ as the line that models the

Exponential Regression

•uses the line of $y = ab^x$ or $y = ae^{kx}$, V where e = 2.718 28 ..., an irrational number commonly used as the base for exponents.

 $y = ab^{x} eq. \quad y = 2(5)$ $y = ab^{x} eq. \quad y = 2(5)$ $y = ab^{x} eq. \quad y = 2(5)$

It can give inaccurate results to your data. We get a different answer if we use a linear regression. Polynomial regression could give us the wrong info if we perceive it to be exponential! Your model should show a logical relationship

There are limits to the regression curves.

between the variables with the best fit possible.

Pon't just check with r² value

For example:

Depreciation of the value of a car – exponential Trajectory of a rocket – power (quadratic)