The Binomial Theorem

Recall that a binomial is a polynomial with just two terms, so it has the form a + b. Expanding $(a + b)^n$ becomes very laborious as *n* increases. This section introduces a method for expanding powers of binomials. This method is useful both as an algebraic tool and for probability calculations, as you will see in later chapters.

Blaise Pascal

INVESTIGATE & INQUIRE: Patterns in the Binomial Expansion

- 1. Expand each of the following and simplify fully.
 - a) $(a + b)^1$ b) $(a + b)^2$ c) $(a + b)^3$ d) $(a + b)^4$ e) $(a + b)^5$
- **2.** Study the terms in each of these expansions. Describe how the degree of each term relates to the power of the binomial.
- **3.** Compare the terms in Pascal's triangle to the expansions in question 1. Describe any pattern you find.
- **4.** Predict the terms in the expansion of $(a + b)^6$.

In section 4.4, you found a number of patterns in Pascal's triangle. Now that you are familiar with combinations, there is another important pattern that you can recognize. Each term in Pascal's triangle corresponds to a value of $_{n}C_{r}$.

Comparing the two triangles shown on page 289, you can see that $t_{n,r} = {}_{n}C_{r}$. Recall that Pascal's method for creating his triangle uses the relationship

 $t_{n,r} = t_{n-1, r-1} + t_{n-1, r}.$

So, this relationship must apply to combinations as well.

Pascal's Formula

 $_{n}C_{r} = _{n-1}C_{r-1} + _{n-1}C_{r}$

Proof:

$$\sum_{n=1}^{n-1} C_r = \frac{(n-1)!}{(r-1)!(n-r)!} + \frac{(n-1)!}{r!(n-r-1)!}$$

$$= \frac{r(n-1)!}{r(r-1)!(n-r)!} + \frac{(n-1)!(n-r)}{r!(n-r)(n-r-1)!}$$

$$= \frac{r(n-1)!}{r!(n-r)!} + \frac{(n-1)!(n-r)}{r!(n-r)!}$$

$$= \frac{(n-1)!}{r!(n-r)!} [r + (n-r)]$$

$$= \frac{(n-1)! \times n}{r!(n-r)!}$$

$$= \frac{n!}{r!(n-r)!}$$

This proof shows that the values of ${}_{n}C_{r}$ do indeed follow the pattern that creates Pascal's triangle. It follows that ${}_{n}C_{r} = t_{n,r}$ for all the terms in Pascal's triangle.

Example 1 Applying Pascal's Formula to Combinations

Rewrite each of the following using Pascal's formula.
a)
$${}_{12}C_8$$
 b) ${}_{19}C_5 + {}_{19}C_6$

Solution

a) $_{12}C_8 = {}_{11}C_7 + {}_{11}C_8$ **b)** $_{19}C_5 + {}_{19}C_6 = {}_{20}C_6$

As you might expect from the investigation at the beginning of this section, the coefficients of each term in the expansion of $(a + b)^n$ correspond to the terms in row *n* of Pascal's triangle. Thus, you can write these coefficients in combinatorial form.

The Binomial Theorem

$$(a+b)^{n} = {}_{n}C_{0}a^{n} + {}_{n}C_{1}a^{n-1}b + {}_{n}C_{2}a^{n-2}b^{2} + \dots + {}_{n}C_{r}a^{n-r}b^{r} + \dots + {}_{n}C_{n}b^{n}$$

or $(a+b)^{n} = \sum_{r=0}^{n} {}_{n}C_{r}a^{n-r}b^{r}$

Example 2 Applying the Binomial Theorem

Use combinations to expand $(a + b)^6$.

Solution

$$(a+b)^{6} = \sum_{r=0}^{6} {}_{6}C_{r}a^{6-r}b^{r}$$

= ${}_{6}C_{0}a^{6} + {}_{6}C_{1}a^{5}b + {}_{6}C_{2}a^{4}b^{2} + {}_{6}C_{3}a^{3}b^{3} + {}_{6}C_{4}a^{2}b^{4} + {}_{6}C_{5}ab^{5} + {}_{6}C_{6}b^{6}$
= $a^{6} + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{2}b^{4} + 6ab^{5} + b^{6}$

Example 3 Binomial Expansions Using Pascal's Triangle

Use Pascal's triangle to expand

- a) $(2x-1)^4$
- **b)** $(3x 2y)^5$

Solution

a) Substitute 2x for a and -1 for b. Since the exponent is 4, use the terms in row 4 of Pascal's triangle as the coefficients: 1, 4, 6, 4, and 1. Thus,

$$(2x-1)^4 = 1(2x)^4 + 4(2x)^3(-1) + 6(2x)^2(-1)^2 + 4(2x)(-1)^3 + 1(-1)^4$$

= 16x⁴ + 4(8x³)(-1) + 6(4x²)(1) + 4(2x)(-1) + 1
= 16x⁴ - 32x³ + 24x² - 8x + 1

b) Substitute 3x for a and -2y for b, and use the terms from row 5 as coefficients.

$$(3x - 2y)^5 = 1(3x)^5 + 5(3x)^4(-2y) + 10(3x)^3(-2y)^2 + 10(3x)^2(-2y)^3 + 5(3x)(-2y)^4 + 1(-2y)^5 = 243x^5 - 810x^4y + 1080x^3y^2 - 720x^2y^3 + 240xy^4 - 32y^5$$

Example 4 Expanding Binomials Containing Negative Exponents

Use the binomial theorem to expand and simplify $\left(x + \frac{2}{x^2}\right)^4$.

Solution

Substitute x for a and
$$\frac{2}{x^2}$$
 for b.

$$\left(x + \frac{2}{x^2}\right)^4 = \sum_{r=0}^4 C_r x^{4-r} \left(\frac{2}{x^2}\right)^r$$

$$= {}_4 C_0 x^4 + {}_4 C_1 x^3 \left(\frac{2}{x^2}\right) + {}_4 C_2 x^2 \left(\frac{2}{x^2}\right)^2 + {}_4 C_3 x \left(\frac{2}{x^2}\right)^3 + {}_4 C_4 \left(\frac{2}{x^2}\right)^4$$

$$= 1 x^4 + 4 x^3 \left(\frac{2}{x^2}\right) + 6 x^2 \left(\frac{4}{x^4}\right) + 4 x \left(\frac{8}{x^6}\right) + 1 \left(\frac{16}{x^8}\right)$$

$$= x^4 + 8x + 24 x^{-2} + 32 x^{-5} + 16 x^{-8}$$

Example 5 Patterns With Combinations

Using the patterns in Pascal's triangle from the investigation and Example 4 in section 4.4, write each of the following in combinatorial form.

- **a)** the sum of the terms in row 5 and row 6
- **b)** the sum of the terms in row *n*
- c) the first 5 triangular numbers
- d) the *n*th triangular number

Solution

a) Row 5:

$$1+5+10+10+5+1$$

 $= {}_{5}C_{0} + {}_{5}C_{1} + {}_{5}C_{2} + {}_{5}C_{3} + {}_{5}C_{4} + {}_{5}C_{5}$
 $= 32$
 $= 2^{5}$
Row 6:
 $1+6+15+20+15+6+1$
 $= {}_{6}C_{0} + {}_{6}C_{1} + {}_{6}C_{2} + {}_{6}C_{3} + {}_{6}C_{4} + {}_{6}C_{5} + {}_{6}C_{6}$
 $= 64$
 $= 2^{6}$

b) From part a) it appears that ${}_{n}C_{0} + {}_{n}C_{1} + \ldots + {}_{n}C_{n} = 2^{n}$.

Using the binomial theorem,

$$2^{n} = (1 + 1)^{n}$$

= $_{n}C_{0} \times 1^{n} + _{n}C_{1} \times 1^{n-1} \times 1 + \dots + _{n}C_{n} \times 1^{n}$
= $_{n}C_{0} + _{n}C_{1} + \dots + _{n}C_{n}$

c)	n	Triangular Numbers	Combinatorial Form
-	1	1	$_{2}C_{2}$
	2	3	$_{3}C_{2}$
	3	6	$_{4}C_{2}$
	4	10	₅ C ₂
	5	15	$_{6}C_{2}$

d) The *n*th triangular number is $_{n+1}C_2$.

Example 6 Factoring Using the Binomial Theorem

Rewrite $1 + 10x^2 + 40x^4 + 80x^6 + 80x^8 + 32x^{10}$ in the form $(a + b)^n$.

Solution

There are six terms, so the exponent must be 5. The first term of a binomial expansion is a^n , so a must be 1. The final term is $32x^{10} = (2x^2)^5$, so $b = 2x^2$. Therefore, $1 + 10x^2 + 40x^4 + 80x^6 + 80x^8 + 32x^{10} = (1 + 2x^2)^5$

Key Concepts

- The coefficients of the terms in the expansion of $(a + b)^n$ correspond to the terms in row *n* of Pascal's triangle.
- The binomial $(a + b)^n$ can also be expanded using combinatorial symbols:

$$(a+b)^n = {}_nC_0a^n + {}_nC_1a^{n-1}b + {}_nC_2a^{n-2}b^2 + \dots + {}_nC_nb^n \text{ or } \sum_{r=0}^n {}_nC_ra^{n-r}b^r$$

- The degree of each term in the binomial expansion of $(a + b)^n$ is *n*.
- Patterns in Pascal's triangle can be summarized using combinatorial symbols.

Communicate Your Understanding

- 1. Describe how Pascal's triangle and the binomial theorem are related.
- **2.** a) Describe how you would use Pascal's triangle to expand $(2x + 5y)^9$.
 - **b)** Describe how you would use the binomial theorem to expand $(2x + 5y)^9$.
- **3.** Relate the sum of the terms in the *n*th row of Pascal's triangle to the total number of subsets of a set of *n* elements. Explain the relationship.

Practise

1. Rewrite each of the following using Pascal's formula.

a)
$${}_{17}C_{11}$$

b) ${}_{43}C_{36}$
c) ${}_{n+1}C_{r+1}$
d) ${}_{32}C_4 + {}_{32}C_5$
e) ${}_{15}C_{10} + {}_{15}C_9$
f) ${}_{n}C_r + {}_{n}C_{r+1}$
g) ${}_{18}C_9 - {}_{17}C_9$
h) ${}_{24}C_8 - {}_{23}C_7$
i) ${}_{n}C_r - {}_{n-1}C_{r-1}$

2. Determine the value of k in each of these terms from the binomial expansion of $(a + b)^{10}$.

a) $210a^6b^k$ b) $45a^kb^8$ c) $252a^kb^k$

3. How many terms would be in the expansion of the following binomials?

a)
$$(x+y)^{12}$$
 b) $(2x-3y)^5$ c) $(5x-2)^{20}$

4. For the following terms from the expansion of $(a + b)^{11}$, state the coefficient in both ${}_{n}C_{r}$ and numeric form.

a)
$$a^2b^9$$
 b) a^{11} c) a^6b^5

Apply, Solve, Communicate

B

5. Using the binomial theorem and patterns in Pascal's triangle, simplify each of the following.

a)
$${}_{9}C_{0} + {}_{9}C_{1} + \dots + {}_{9}C_{9}$$

b) ${}_{12}C_{0} - {}_{12}C_{1} + {}_{12}C_{2} - \dots - {}_{12}C_{11} + {}_{12}C_{12}$
c) $\sum_{r=0}^{15} {}_{15}C_{r}$ d) $\sum_{r=0}^{n} {}_{n}C_{r}$

- 6. If $\sum_{r=0}^{n} C_r = 16$ 384, determine the value of *n*.
- a) Write formulas in combinatorial form for the following. (Refer to section 4.4, if necessary.)
 - i) the sum of the squares of the terms in the *n*th row of Pascal's triangle
 - ii) the result of alternately adding and subtracting the squares of the terms in the *n*th row of Pascal's triangle
 - iii) the number of diagonals in an *n*-sided polygon
 - **b)** Use your formulas from part a) to determine
 - i) the sum of the squares of the terms in row 15 of Pascal's triangle
 - ii) the result of alternately adding and subtracting the squares of the terms in row 12 of Pascal's triangle
 - iii) the number of diagonals in a 14-sided polygon
- 8. How many terms would be in the expansion of $(x^2 + x)^8$?
- **9.** Use the binomial theorem to expand and simplify the following.
 - a) $(x + y)^7$ b) $(2x + 3y)^6$ c) $(2x - 5y)^5$ d) $(x^2 + 5)^4$
 - e) $(3a^2 + 4c)^7$ f) $5(2p 6c^2)^5$

- **10.** Communication
 - a) Find and simplify the first five terms of the expansion of $(3x + y)^{10}$.
 - **b)** Find and simplify the first five terms of the expansion of $(3x y)^{10}$.
 - **c)** Describe any similarities and differences between the terms in parts a) and b).
- **11.** Use the binomial theorem to expand and simplify the following.

a)
$$\left(x^{2} - \frac{1}{x}\right)^{5}$$

b) $\left(2y + \frac{3}{y^{2}}\right)^{4}$
c) $(\sqrt{x} + 2x^{2})^{6}$
d) $\left(k + \frac{k}{m^{2}}\right)^{5}$
e) $\left(\sqrt{y} - \frac{2}{\sqrt{y}}\right)^{7}$
f) $2\left(3m^{2} - \frac{2}{\sqrt{m}}\right)^{4}$

- **12.** Application Rewrite the following expansions in the form $(a + b)^n$, where *n* is a positive integer.
 - a) $x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6$

b)
$$y^{12} + 8y^9 + 24y^6 + 32y^3 + 16$$

- c) $243a^5 405a^4b + 270a^3b^2 90a^2b^3 + 15ab^4 b^5$
- **13.** Communication Use the binomial theorem to simplify each of the following. Explain your results.

a)
$$\left(\frac{1}{2}\right)^5 + 5\left(\frac{1}{2}\right)^5 + 10\left(\frac{1}{2}\right)^5 + 10\left(\frac{1}{2}\right)^5 + 5\left(\frac{1}{2}\right)^5 + 5\left(\frac{1}{2}\right)^5 + \left(\frac{1}{2}\right)^5$$

b) $(0.7)^7 + 7(0.7)^6(0.3) + 21(0.7)^5(0.3)^2 + \dots + (0.3)^7$

c)
$$7^9 - 9 \times 7^8 + 36 \times 7^7 - \dots - 7^0$$

- 14. a) Expand $\left(x + \frac{2}{x}\right)^4$ and compare it with the expansion of $\frac{1}{x^4}(x^2 + 2)^4$.
 - **b)** Explain your results.

- **15.** Use your knowledge of algebra and the binomial theorem to expand and simplify each of the following.
 - **a)** $(25x^2 + 30xy + 9y^2)^3$
 - **b)** $(3x 2y)^5(3x + 2y)^5$
- 16. Application
 - **a)** Calculate an approximation for $(1.2)^9$ by expanding $(1 + 0.2)^9$.
 - **b)** How many terms do you have to evaluate to get an approximation accurate to two decimal places?
- 17. In a trivia contest, Adam has drawn a topic he knows nothing about, so he makes random guesses for the ten true/false questions. Use the binomial theorem to help find
 - a) the number of ways that Adam can answer the test using exactly four *trues*
 - **b)** the number of ways that Adam can answer the test using at least one *true*

ACHIEVEMENT CHECKKnowledge/
UnderstandingThinking/Inquiry/
Problem SolvingCommunicationApplication18. a)Expand $(h + t)^5$.

- b) Explain how this expansion can be used to determine the number of your of getting
 - determine the number of ways of getting exactly *h* heads when five coins are tossed.
 - c) How would your answer in part b) change if six coins are being tossed? How would it change for *n* coins? Explain.
- C
- **19.** Find the first three terms, ranked by degree of the terms, in each expansion.
 - **a)** $(x+3)(2x+5)^4$
 - **b)** $(2x+1)^2(4x-3)^5$

c)
$$(x^2 - 5)^9(x^3 + 2)^6$$

- 20. Inquiry/Problem Solving
 - a) Use the binomial theorem to expand (x + y + z)² by first rewriting it as [x + (y + z)]².
 - **b)** Repeat part a) with $(x + y + z)^3$.
 - c) Using parts a) and b), predict the expansion of $(x + y + z)^4$. Verify your prediction by using the binomial theorem to expand $(x + y + z)^4$.
 - **d)** Write a formula for $(x + y + z)^n$.
 - e) Use your formula to expand and simplify $(x + y + z)^5$.
- **21. a)** In the expansion of (x + y)⁵, replace x and y with B and G, respectively. Expand and simplify.
 - b) Assume that a couple has an equal chance of having a boy or a girl. How would the expansion in part a) help find the number of ways of having k girls in a family with five children?
 - c) In how many ways could a family with five children have exactly three girls?
 - d) In how many ways could they have exactly four boys?
- 22. A simple code consists of a string of five symbols that represent different letters of the alphabet. Each symbol is either a dot (•) or a dash (-).
 - a) How many different letters are possible using this code?
 - **b)** How many coded letters will contain exactly two dots?
 - **c)** How many different coded letters will contain at least one dash?