Normal Probability Plots

If it is not known whether the underlying population is normally distributed, you can use a graphing calculator or software to construct a normal probability plot of the sample data. A **normal probability plot** graphs the data according to the probabilities you would expect if the data are normal, using *z*-scores. If the plot is approximately linear (a straight line), the underlying population can be assumed to be normally distributed.

Using a Graphing Calculator

A toy tricycle comes with this label: "Easy-To-Assemble. An adult can complete this assembly in 20 min or less." Thirty-six adults were asked to complete the assembly of a tricycle, and record their times. Here are the results:

16	10	20	22	19	14	30	22	12	24	28	11	17	13	18	19	17	21
29	22	16	28	21	15	26	23	24	20	8	17	21	32	18	25	22	20

- **1.** Using a graphing calculator, enter these data in L1. Find the mean and standard deviation of the data.
- **2.** Make a normal probability plot of the data. Using **STAT PLOT**, select 1:Plot1, and the settings shown below.

Based on the plot, are assembly times normally distributed?

- **3. a)** What is the probability that an adult can complete this assembly in 20 min or less?
 - **b)** What proportion of adults should complete this assembly within 15 to 30 min?

Using Fathom[™]

- a) Open FathomTM, and open a new document if necessary. Drag a new collection box to the workspace. Rename the collection Assembly Times, and create 36 new cases.
 - **b)** Drag a new **case table** to the workspace. Name the first column Times, the second column zTimes, and the third column Quantiles.

- c) i) Enter the time data in the first column. Sort it in ascending order.
 - ii) Edit the formula in the second column to **zScore**(Times). This will calculate the *z*-scores for the data.
 - iii) Edit the formula in the third column to normalQuantile((uniqueRank(Times) – 0.5)/36, 0, 1). This formula will calculate the z-scores of the quantiles corresponding to each entry in the Times column. The uniqueRank() function returns the "row number" of the *sorted* data. Note that most of the quantile z-scores in the screen below are different from the zscores for the corresponding data.

	aventity Tinva									
	Times	zTimes	Quantiles	<new>2</new>						
245		z5core (Times)	normalQuantite (UniqueRank (Times) - 0.5, 0, 1)							
1	8	-2.10079	-2.20041	9						
2	10	-1,75066	-1.73166							
3	11	-1.57519	-1,47994							
4	12	-1.40053	-1.29754							
5	13	-1,22546	-1.15035							
6	14	-1.05039	-1.02459							
7	15	-0.875326	-0.91325							
8	16	-0.700263	-0.718058	-						
9	18	-0.700263	-0.812218							
10	17	-0.525197	-0.548522							
11	17	-0.525197	-0,459253							
17	17	-0.525197	-0.031402							
13	10	-0.360131	0.318839							
14	18	-0.350131	-0.302031							
15	19	-0.175066	-0.17495							
16	19	-0.175066	-0.346164							
97	20	0	-0.104633							
18	20	0	-0.0340213							

d) Drag a new graph to the workspace. Drag the Times title to the horizontal axis, and the Quantiles title to the vertical axis to generate a normal probability plot. Calculate the linear correlation coefficient for Times and Quantiles and comment on how near to linear this graph is. Are the data normally distributed?

- e) Double click on the collection to open the inspector. Choose the Measures tab. Create four measures: Mean, StdDev, P20orLess, and P15to30. Use the mean, standard deviation, and normalCumulative functions to calculate the mean, the standard deviation, and the answers to question 3.
- **5.** For each of the questions 1 to 6, 8, and 12 of section 8.3, pages 439 to 441, use a normal probability plot to determine how close to a normal distribution each data set is.
- 6. Let $x_1, x_2, ..., x_n$ be a set of data, ranked in increasing order so that $x_1 \le x_2 \le ... \le x_n$. For i = 1, 2, ..., n, define the **quantile** z_i by $P(Z < z_i) = \frac{(i - 0.5)}{m}$,

where Z is a standard normal distribution (mean 0, standard deviation 1).

- a) For a data set of your choice, plot a graph of z_i against x_i. Remember to sort the x-values into increasing order. Use the invNorm(function on your graphing calculator, or the table of Areas Under the Normal Distribution Curve on pages 606 and 607, to calculate the z-values. Notice that these quantile z-values are different from the z-scores in earlier sections.
- b) Compare this graph with the normal probability plot for the data set. Explain your findings.
- c) Explain why, if the data are normally distributed, a graph of z_i against x_i should be close to a straight line.