BINOMIAL

 DISTRIBUTIONS
Binomial Distributions

- Situations where there are exactly two possible Mutually Exclusive outcomes
- For examples:
- Yes/No to a survey question
- Product is defective/not defective
- Correct/Wrong response to a multiple choice question

Conditions for Binomial Distributions

- There are a fixed number of trials, n
- All trials are identical and independent
- Each trial has exactly two Mutually Exclusive outcomes: Success (S) or Failure (F)
- The probability of success is the same in every trial
- The random variable is the number of successes in a given number of trials

Notations for Binomial Distributions

- $P(S)=p$
- $P(F)=q=1-p$
- $n=$ number of trials
- $x=$ number of successes
* Success is just what is being measured

Binomial Distributions

Which of the following results in a binomial probability distribution?

- Determining whether each of a 3000 heart pacemakers is acceptable or defective
- Surveying people on their opinions of the current prime minister
- Rolling a die twenty times and counting the number of times a 6 is rolled

Formulas for Binomial Distributions

Probability in a Binomial Distribution

$$
P(x)={ }_{n} C_{x} p^{x} q^{n-x}
$$

- where p is the probability of success on any individual and independent trial and
- $q=1-p$ is the probability of failure

Formulas for Binomial Distributions

For \boldsymbol{n} independent trials, the expectation or
Expected Value in a Binomial Distribution
$E(X)=n p$

- where p is the probability of success on any individual and independent trial and
- n is the number of trials

Example 1

A report from the Secretary of Health and Human Services stated that 70\% of single-vehicle traffic fatalities that occur at night on weekends involve an intoxicated driver. If a sample of 10 single-vehicle traffic fatalities that occur at night on a weekend is selected, find the probability that exactly seven involve a driver that is intoxicated.

This is a binomial experiment where:

$$
n=10 \quad x=7 \quad p=0.70 \quad q=0.30
$$

Example 1

A report from the Secretary of Health and Human Services stated that 70\% of single-vehicle traffic fatalities that occur at night on weekends involve an intoxicated driver. If a sample of 10 single-vehicle traffic fatalities that occur at night on a weekend is selected, find the probability that exactly seven involve a driver that is intoxicated.

This is a binomial experiment where:

$$
n=10 \quad x=7 \quad p=0.70 \quad q=0.30
$$

$$
P(7)={ }_{10} C_{7}(0.7)^{7}(0.3)^{3}
$$

$$
P(7)=0.2668 \text { or } 0.27
$$

Example 1

A report from the Secretary of Health and Human Services stated that 70% of single-vehicle traffic fatalities that occur at night on weekends involve an intoxicated driver. If a sample of 10 single-vehicle traffic fatalities that occur at night on a weekend is selected, find the probability that exactly seven involve a driver that is intoxicated.

What about the probability of at least 8 involving an intoxicated driver?

Example 1

What about the probability of at least 8 involving an intoxicated driver?
$P($ at least 8$)=P(8)$ or $P(9)$ or $P(10)$

$$
\begin{aligned}
& =0.233474+0.121061+0.028248 \\
& =0.382783
\end{aligned}
$$

Example 2

Tan's family moves to an area with a different telephone exchange, so they have to get a new telephone number. Telephone numbers in the new exchange start with 466, and all combinations for the four remaining digits are equally likely. Tan's favourite numbers are the prime numbers $2,3,5$, and 7 .

Find the probability distribution for the number of these prime digits in Tan's new phone number

Example 2

The probability of an individual digit being a 2,3 , 5 , or 7 is 0.4 (4 out of a choice of 10 digits)
$p=0.4$ and $q=0.6$

Probability, $P(x)$

0
1
2
3
4

$$
\begin{aligned}
& { }_{4} C_{0}(0.4)^{0}(0.6)^{4}=0.1296 \\
& { }_{4} C_{1}(0.4)^{1}(0.6)^{3}=0.3456 \\
& { }_{4} C_{2}(0.4)^{2}(0.6)^{2}=0.3456 \\
& { }_{4} C_{3}(0.4)^{3}(0.6)^{1}=0.1536 \\
& { }_{4} C_{4}(0.4)^{4}(0.6)^{0}=0.0256
\end{aligned}
$$

Example 2

Tan's family moves to an area with a different telephone exchange, so they have to get a new telephone number. Telephone numbers in the new exchange start with 466, and all combinations for the four remaining digits are equally likely. Tan's favourite numbers are the prime numbers $2,3,5$, and 7.

What is the expected number of these prime digits in the new telephone number?

Example 2

Using the formula for Expected Value

$$
\begin{aligned}
E(X) & =n p \\
& =4(0.4) \\
& =1.6
\end{aligned}
$$

On average, there will be 1.6 of Tan's favourite digits in telephone numbers in his new exchange.

Example 2

Using the formula for Expected Value for any

 Probability Distribution will have the same result:$$
\begin{aligned}
E(X) & =x_{1} P\left(X=x_{1}\right)+x_{2} P\left(X=x_{2}\right)+\ldots+x_{n} P\left(X=x_{n}\right) \\
& =\sum_{i=1}^{n} x_{i} P\left(X=x_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
E(X) & =0(0.1296)+1(0.3456)+2(0.3456)+3(0.1536)+4(0.0256) \\
& =1.6
\end{aligned}
$$

Example 3

A box of Smarties has different colours in it.
There is a 15% chance of getting a blue Smartie.
What is the probability that at least 4 Smarties in a given box are blue out of 10 ?

What is the expected number of blue candies?

Example 3

A box of Smarties has different colours in it.
There is a 15% chance of getting a blue Smartie.
What is the probability that at least 4 candies in a given box are blue out of 10 ?
$P($ at least 4 blue $)=1-p(0)-p(1)-p(2)-p(3)$
$=1-0.1969-0.3474-0.2759-0.1298=0.05$

Example 3

A box of Smarties has different colours in it.
There is a 15% chance of getting a blue Smartie.
What is the expected number of blue candies?
(i.e. out of the 10)
$\mathrm{E}(\mathrm{X})=n \mathrm{p}=(10)(0.15)=1.5$

