\qquad

1. How many ways can we arrange 10 books on a shelf?

\qquad

This is a very long way to write a number. We will use a short notation for this operation from now. It is denoted by factorial.

For any natural number $\mathrm{n}, \quad n!=n(n-1)(n-2)(n-3) \ldots \ldots . .(3)(2)(1)$
Note: $\mathbf{0}!=\mathbf{1} \quad 50!=50 \times 49!$

Example 1: Working with factorials
$\frac{10!}{7!}=$
$\frac{100!}{98!}$
$6 \times 5!=$
$(n+1)!n!=$
$\frac{n!}{(n-2)!}=$
$\frac{1}{n!}+\frac{1}{(n+1)!}=$
$\frac{n!}{(n-k)!}=$

A permutation of all elements of the set of size n is the number of distinct arrangements of the elements. It is denoted by ${ }_{n} P_{n}=n!$ or $P(n, n)$.

Note: A permutation is an arrangement of elements whereby, if an element is selected, it cannot be selected again. In other words, no repeats is allowed

Example 2:

If the Simpsons (Bart, Lisa and Maggie) are to stand in a line for a photograph, how many arrangements could be made?

For each of those \qquad choices, there are \qquad choices for the second position because the first person cannot be reused.
\therefore There are \qquad possible arrangements for these people.

Example 3:

Sandra has a blue, green, red, yellow and purple candy. In how many ways could they be lined up on a table?

A permutation of size \boldsymbol{r} of \boldsymbol{n} elements is the number of distinct arrangements of the r elements.

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!} \quad \text { Note: } n>r \quad P(n, r)
$$

Example 4:

There are 10 magazines in a box. Five of them are to be placed onto a shelf in the library. In how many ways could they be arranged?

Example 5:

From a standard deck of 52 cards, in how many ways could each of the following be arranged?
a) Five face cards (J,Q,K of 4 suits)

b) Eight hearts
c) Nine black cards

Example 6:

In how many ways could the SAC, consisting of a president, vice president, treasurer and publicist be selected from 5 males and 5 females candidate if:
a) There are no restrictions?
b) The president and vice-president may not be of the same sex?

Example 7:

Eric has a briefcase with a three-digit combination lock. He can set the combination himself, and his favourite digits are 5, 6, 7, 8 and 9. Each digit can be used at most once.

a) How many permutations of three of these five digits are there?
b) If you think of each permutation as a three-digit number, how many of these numbers would be odd numbers?
c) How many of the three-digit numbers are even numbers and begin with a 8 ?
d) How many of the three-digit numbers are even numbers and do not begin with a 8 ?
e) Is there a connection among the four answers above? If so, state what it is and why it occurs.

