\qquad
Odds - The probability that an event will occur compared with the probability of its not occurring. This comparison is usually expressed as a ratio in favour or against. The general interpretation of odds is the degree of confidence that someone has that an event will occur.

Example: If two coins are tossed, the possible outcomes are HH, HT, TH, TT.
$\mathrm{P}($ two heads appearing $)=\frac{1}{4}$
$\mathrm{P}($ two heads not appearing $)=\frac{3}{4}$
The odds are expressed as 1 to 3 in favour or 3 to 1 against.

odds in favour of \mathbf{A}	$=\frac{P(A)}{P\left(A^{\prime}\right)}=\frac{n(A)}{n\left(A^{\prime}\right)}$
odds against \mathbf{A}	$=\frac{P\left(A^{\prime}\right)}{P(A)}=\frac{n\left(A^{\prime}\right)}{n(A)}$

Probability and Odds

The terms probability and odds are often used interchangeably. However, they mean two different things.

Example: There are 4 white balls and 7 black balls in a bag. You need to select one ball.

- The probability that you will select a white ball is \qquad
- The odds that you will select a white ball are

$$
P(A)=\frac{n(A)}{n(S)} \quad \text { odds in favour of } \mathrm{A}=\frac{n(A)}{n\left(A^{\prime}\right)}
$$

Therefore odds can be greater than 1 , but probabilities must always be between 0 and 1 .

In general, it can be shown that if the odds in favour of

$$
A=\frac{h}{k} \text {, then } P(A)=\frac{h}{h+k}
$$

